Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117401    DOI: 10.1088/1674-1056/abff20

Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams

Hong-Jun Zhang(张宏俊)1, Ji Wen(文继)1, Zhao-Hong Mo(莫钊洪)1, Hong-Rui Liu(刘鸿瑞)2, Xiao-Dong Wang(汪小东)1, Zhong-Hua Xiong(熊忠华)1, Jin-Wen Zhang(张锦文)2,3,†, and Mao-Bing Shuai(帅茂兵)1,‡
1 Institute of Materials, China Academy of Engineering Physics, Mianyang 621000, China;
2 Institute of Microelectronics, Peking University, Beijing 100871, China;
3 National Key Laboratory of Micro/Nano Fabrication Technology, Institute of Microelectronics, Peking University, Beijing 100871, China
Abstract  For photon detection, superconducting transition-edge sensor (TES) micro-calorimeters are excellent energy-resolving devices. In this study, we report our recent work in developing Ti-/Au-based TES. The Ti/Au TES devices were designed and implemented with a thickness ratio of 1:1 and different suspended structures using micromachining technology. The characteristics were evaluated and analyzed, including surface morphology, 3D deformation of suspended Ti/Au TES device structure, I-V characteristics, and low-temperature superconductivity. The results showed that the surface of Ti/Au has good homogeneity and the surface roughness of Ti/Au is significantly increased compared with the substrate. The structure of Ti/Au bilayer film significantly affects the deformation of suspended devices, but the deformation does not affect the I-V characteristics of the devices. For devices with the Ti/Au bilayer (150μm×150μm) and beams (100μm×25μm), the transition temperature (Tc) is 253 mK with a width of 6 mK, and the value of the temperature sensitivity α is 95.1.
Keywords:  transition-edge sensor      Ti/Au      superconductivity film      microfabrication      deformation of suspended structure  
Received:  19 January 2021      Revised:  04 March 2021      Accepted manuscript online:  08 May 2021
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
Corresponding Authors:  Jin-Wen Zhang, Mao-Bing Shuai     E-mail:;

Cite this article: 

Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵) Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams 2021 Chin. Phys. B 30 117401

[1] Portesi C, Taralli E, Rocci R, Rajteri M and Monticone E 2008 J. Low Temp. Phys. 151 261
[2] Tsujino K, Fukuda D, Fujii G, Inoue S, Fujiwara M, Takeoka M and Sasaki M 2011 Phys. Rev. Lett. 106 250503
[3] Namekata N, Takahashi Y, Fujii G, Fukuda D, Kurimura S and Inoue S 2010 Nat. Photon. 4 158
[4] Gerrits T, Glancy S, Clement T S, Calkins B, Lita A E, Miller A J, Migdall A L, Nam S W, Mirin R P and Knill E 2010 Phys. Rev. A 82 031802
[5] Irimatsugawa T, Hatakeyama S, Ohno M, Takahashi H, Otani C and Maekawa T 2015 IEEE Trans. Appl. Supercond. 25 1
[6] Benford D J, Voellmer G M, Chervenak J A, Irwin K D, Moseley S H, Shafer R A and Staguhn J G 2003 Astronomical Telescopes and Instrumentation, Waikoloa, Hawai'I, United States, March 3, 2002
[7] Taralli E, Portesi C, Rocci R, Rajteri M and Monticone E 2009 IEEE Trans. Appl. Supercond. 19 493
[8] Vissers M R, Gao J S, Sandberg M, Duff S M, Wisbey D S, Irwin K D and Pappas D P 2013 Appl. Phys. Lett. 102 232603
[9] Zhang Q Y, Wang T S, Liu J S, Dong W H, He G F, Li T F, Zhou X X and Chen W 2014 Chin. Phys. B 23 118502
[10] Ukibe M, Tanaka K, Koyanagi M, Morooka T, Pressler H, Ohkubo M and Kobayashi N 2000 Nucl. Instrum. Methods. Phys. Res. A 444 257
[11] Ishisaki Y, Morita U, Koga T, et al. 2002 Astronomical Telescopes and Instrumentation 4851 p. 831
[12] Yoshino T, Mukai K, Ezoe Y, Yamasaki N Y, Mitsuda K, Kurabayashi H, Ishisaki Y, Takano T and Maeda R 2008 J. Low Temp. Phys. 151 185
[13] Kobayashi R, Hattori K, Inoue S and Fukuda D 2019 IEEE Trans. Appl. Supercond. 29 1
[14] Barucci M, Gottardi E, Peroni I, Peruzzi A and Ventura G 2000 IEEE Nuclear Science Symposium Conference Record Lyon, France, Oct 15, 2000
[15] Kiewiet F B, Bruijn M P, Hoevers H F C, Bento A C, Mels W A and Korte de P A J 1999 IEEE Trans. Appl. Supercond. 9 3862
[16] Heijden van der N J, Khosropanah P, Kuur van der J and Ridder M L 2014 J. Low Temp. Phys. 176 370
[17] Mo Z H, Lu C, Liu Y, Feng W, Zhang Y, Zhang W, Tan S Y, Zhang H J, Guo C Y, Wang X D, Wang L, Yan R Z, Ren Z G, Zhu X G, Xiong Z H, An Q and Lai X C 2018 Chin. Phys. B 27 067403
[18] Muramatsu H, Nagayoshi K, Hayashi T, Sakai K, Yamamoto R, Mitsuda K, Yamasaki N Y, Maehata K and Hara T 2016 J. Low Temp. Phys. 184 91
[19] Ezoe Y, Yoshino T, Mukai K, Yoshitake H, Akamatsu H, Ishikawa K, Takano T, Maeda R, Ishisaki Y, Yamasaki N Y, Mitsuda K and Ohashi T 2008 High Energy, Optical and Infrared Detectors for Astronomy Ⅲ, Marseille, France, July 24, 2008, p. 7021
[20] Bruijn M P, Baars N H R, Tiest W M B, Germeau A, Hoevers H F C, Korte P A J de, Mels W A, Ridder M L, Krouwer E, Baar J J van and Wiegerink R J 2003 Nucl. Instrum. Methods. Phys. Res. A 513 143
[21] Suzuki T, Khosropanah P, Hijmering R A, Ridder M, Schoemans M, Hoevers H and Gao J R 2014 IEEE Trans Terahertz Sci Technol 4 171
[22] Khosropanah P, Dirks B, Parra-Borderías M, Ridder M, Hijmering R, Kuur J van der, Gottardi L, Bruijn M, Popescu M, Gao J R and Hoevers H 2010 Millimeter, Submillimeter and Far-Infrared Detectors and Instrumentation for Astronomy V, San Diego, California, USA, July 15, 2010, p. 7741
[23] Liu J, Zhang L Q, Jiang Z N, Kamal A, Liu J S and Chen W 2016 Chin. Phys. Lett. 33 088502
[24] Wu J L, Qi R Z, Huang Q S, Feng Y F, Z Wang H S and Xin Z H 2019 Chin. Phys. Lett. 36 120701
[25] Yoon W, Adams J S, Bandler S R, et al. 2017 IEEE Trans. Appl. Supercond. 27 1
[26] Ekin J W 2006 Experimental Techniques for Low-Temperature Measurements (New York: Oxford University Press) pp. 274-276
[27] Ai P, Gao Q, Liu J, Zhang Y X, Li C, Huang J W, Song C Y, Yan H T, Zhao L, Liu G D, Gu G D, Zhang F F, Yang F, Peng Q J, Xu Z Y and Zhou X J 2019 Chin. Phys. Lett. 36 067402
[28] Enss C 2005 Cryogenic particle detection: Thermal equilibrium calorimeters-An Introduction (New York: Springer Berlin Heidelberg) pp. 5-6
[1] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[2] Dynamic vortex Mott transition in triangular superconducting arrays
Zi-Xi Pei(裴子玺), Wei-Gui Guo(郭伟贵), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037404.
[3] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[4] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[5] Etching-assisted femtosecond laser microfabrication
Monan Liu(刘墨南), Mu-Tian Li(李木天), Han Yang(杨罕), Hong-Bo Sun(孙洪波). Chin. Phys. B, 2018, 27(9): 094212.
[6] A grooved planar ion trap design for scalable quantum information processing
Ji Wei-Bang(冀炜邦), Wan Jin-Yin(万金银), Cheng Hua-Dong(成华东), and Liu Liang(刘亮) . Chin. Phys. B, 2012, 21(6): 063701.
No Suggested Reading articles found!