CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams |
Hong-Jun Zhang(张宏俊)1, Ji Wen(文继)1, Zhao-Hong Mo(莫钊洪)1, Hong-Rui Liu(刘鸿瑞)2, Xiao-Dong Wang(汪小东)1, Zhong-Hua Xiong(熊忠华)1, Jin-Wen Zhang(张锦文)2,3,†, and Mao-Bing Shuai(帅茂兵)1,‡ |
1 Institute of Materials, China Academy of Engineering Physics, Mianyang 621000, China; 2 Institute of Microelectronics, Peking University, Beijing 100871, China; 3 National Key Laboratory of Micro/Nano Fabrication Technology, Institute of Microelectronics, Peking University, Beijing 100871, China |
|
|
Abstract For photon detection, superconducting transition-edge sensor (TES) micro-calorimeters are excellent energy-resolving devices. In this study, we report our recent work in developing Ti-/Au-based TES. The Ti/Au TES devices were designed and implemented with a thickness ratio of 1:1 and different suspended structures using micromachining technology. The characteristics were evaluated and analyzed, including surface morphology, 3D deformation of suspended Ti/Au TES device structure, I-V characteristics, and low-temperature superconductivity. The results showed that the surface of Ti/Au has good homogeneity and the surface roughness of Ti/Au is significantly increased compared with the substrate. The structure of Ti/Au bilayer film significantly affects the deformation of suspended devices, but the deformation does not affect the I-V characteristics of the devices. For devices with the Ti/Au bilayer (150μm×150μm) and beams (100μm×25μm), the transition temperature (Tc) is 253 mK with a width of 6 mK, and the value of the temperature sensitivity α is 95.1.
|
Received: 19 January 2021
Revised: 04 March 2021
Accepted manuscript online: 08 May 2021
|
PACS:
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
Corresponding Authors:
Jin-Wen Zhang, Mao-Bing Shuai
E-mail: zhangjinwen@pku.edu.cn;shuaimb@sina.com
|
Cite this article:
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵) Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams 2021 Chin. Phys. B 30 117401
|
[1] Portesi C, Taralli E, Rocci R, Rajteri M and Monticone E 2008 J. Low Temp. Phys. 151 261 [2] Tsujino K, Fukuda D, Fujii G, Inoue S, Fujiwara M, Takeoka M and Sasaki M 2011 Phys. Rev. Lett. 106 250503 [3] Namekata N, Takahashi Y, Fujii G, Fukuda D, Kurimura S and Inoue S 2010 Nat. Photon. 4 158 [4] Gerrits T, Glancy S, Clement T S, Calkins B, Lita A E, Miller A J, Migdall A L, Nam S W, Mirin R P and Knill E 2010 Phys. Rev. A 82 031802 [5] Irimatsugawa T, Hatakeyama S, Ohno M, Takahashi H, Otani C and Maekawa T 2015 IEEE Trans. Appl. Supercond. 25 1 [6] Benford D J, Voellmer G M, Chervenak J A, Irwin K D, Moseley S H, Shafer R A and Staguhn J G 2003 Astronomical Telescopes and Instrumentation, Waikoloa, Hawai'I, United States, March 3, 2002 [7] Taralli E, Portesi C, Rocci R, Rajteri M and Monticone E 2009 IEEE Trans. Appl. Supercond. 19 493 [8] Vissers M R, Gao J S, Sandberg M, Duff S M, Wisbey D S, Irwin K D and Pappas D P 2013 Appl. Phys. Lett. 102 232603 [9] Zhang Q Y, Wang T S, Liu J S, Dong W H, He G F, Li T F, Zhou X X and Chen W 2014 Chin. Phys. B 23 118502 [10] Ukibe M, Tanaka K, Koyanagi M, Morooka T, Pressler H, Ohkubo M and Kobayashi N 2000 Nucl. Instrum. Methods. Phys. Res. A 444 257 [11] Ishisaki Y, Morita U, Koga T, et al. 2002 Astronomical Telescopes and Instrumentation 4851 p. 831 [12] Yoshino T, Mukai K, Ezoe Y, Yamasaki N Y, Mitsuda K, Kurabayashi H, Ishisaki Y, Takano T and Maeda R 2008 J. Low Temp. Phys. 151 185 [13] Kobayashi R, Hattori K, Inoue S and Fukuda D 2019 IEEE Trans. Appl. Supercond. 29 1 [14] Barucci M, Gottardi E, Peroni I, Peruzzi A and Ventura G 2000 IEEE Nuclear Science Symposium Conference Record Lyon, France, Oct 15, 2000 [15] Kiewiet F B, Bruijn M P, Hoevers H F C, Bento A C, Mels W A and Korte de P A J 1999 IEEE Trans. Appl. Supercond. 9 3862 [16] Heijden van der N J, Khosropanah P, Kuur van der J and Ridder M L 2014 J. Low Temp. Phys. 176 370 [17] Mo Z H, Lu C, Liu Y, Feng W, Zhang Y, Zhang W, Tan S Y, Zhang H J, Guo C Y, Wang X D, Wang L, Yan R Z, Ren Z G, Zhu X G, Xiong Z H, An Q and Lai X C 2018 Chin. Phys. B 27 067403 [18] Muramatsu H, Nagayoshi K, Hayashi T, Sakai K, Yamamoto R, Mitsuda K, Yamasaki N Y, Maehata K and Hara T 2016 J. Low Temp. Phys. 184 91 [19] Ezoe Y, Yoshino T, Mukai K, Yoshitake H, Akamatsu H, Ishikawa K, Takano T, Maeda R, Ishisaki Y, Yamasaki N Y, Mitsuda K and Ohashi T 2008 High Energy, Optical and Infrared Detectors for Astronomy Ⅲ, Marseille, France, July 24, 2008, p. 7021 [20] Bruijn M P, Baars N H R, Tiest W M B, Germeau A, Hoevers H F C, Korte P A J de, Mels W A, Ridder M L, Krouwer E, Baar J J van and Wiegerink R J 2003 Nucl. Instrum. Methods. Phys. Res. A 513 143 [21] Suzuki T, Khosropanah P, Hijmering R A, Ridder M, Schoemans M, Hoevers H and Gao J R 2014 IEEE Trans Terahertz Sci Technol 4 171 [22] Khosropanah P, Dirks B, Parra-Borderías M, Ridder M, Hijmering R, Kuur J van der, Gottardi L, Bruijn M, Popescu M, Gao J R and Hoevers H 2010 Millimeter, Submillimeter and Far-Infrared Detectors and Instrumentation for Astronomy V, San Diego, California, USA, July 15, 2010, p. 7741 [23] Liu J, Zhang L Q, Jiang Z N, Kamal A, Liu J S and Chen W 2016 Chin. Phys. Lett. 33 088502 [24] Wu J L, Qi R Z, Huang Q S, Feng Y F, Z Wang H S and Xin Z H 2019 Chin. Phys. Lett. 36 120701 [25] Yoon W, Adams J S, Bandler S R, et al. 2017 IEEE Trans. Appl. Supercond. 27 1 [26] Ekin J W 2006 Experimental Techniques for Low-Temperature Measurements (New York: Oxford University Press) pp. 274-276 [27] Ai P, Gao Q, Liu J, Zhang Y X, Li C, Huang J W, Song C Y, Yan H T, Zhao L, Liu G D, Gu G D, Zhang F F, Yang F, Peng Q J, Xu Z Y and Zhou X J 2019 Chin. Phys. Lett. 36 067402 [28] Enss C 2005 Cryogenic particle detection: Thermal equilibrium calorimeters-An Introduction (New York: Springer Berlin Heidelberg) pp. 5-6 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|