Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100301    DOI: 10.1088/1674-1056/27/10/100301
GENERAL Prev   Next  

Decoherence of macroscopic objects from relativistic effect

Guo-Hui Dong(董国慧)1,2, Yu-Han Ma(马宇翰)1,2, Jing-Fu Chen(陈劲夫)1,2, Xin Wang(王欣)1,2, Chang-Pu Sun(孙昌璞)1,2
1 Beijing Computational Science Research Center, Beijing 100193, China;
2 Graduate School of China Academy of Engineering Physics, Beijing 100193, China
Abstract  

We study how the decoherence of macroscopic objects originates intrinsically from the relativistic effect. With the degree of freedom of the center of mass (CM) characterizing the collective quantum state of a macroscopic object (MO), it is found that an MO consisting of N particles can decohere with a time scale of no more than √N-1. Here, the special relativity can induce the coupling of the collective motion mode and the relative motion modes in an order of 1/c2, which intrinsically results in the above minimum decoherence.

Keywords:  decoherence      macroscopic object      special relativistic effect  
Received:  07 June 2018      Revised:  13 August 2018      Accepted manuscript online: 
PACS:  03.30.+p (Special relativity)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  04.20.Cv (Fundamental problems and general formalism)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11421063 and 11534002), the National Key Basic Research Program of China (Grant No. 2014CB921403), the National Key Research and Development Program of China (Grant No. 2016YFA0301201), and the NSAF (Grant No. U1530401).

Corresponding Authors:  Chang-Pu Sun     E-mail:  cpsun@csrc.ac.cn

Cite this article: 

Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞) Decoherence of macroscopic objects from relativistic effect 2018 Chin. Phys. B 27 100301

[1] Griffiths D J 2017 Introduction to Quantum Mechanics (Cambridge:Cambridge University Press) pp. 1-18
[2] Sakurai J J 1995 Modern Quantum Mechanics (Massachusetts:Addison-Wesley) p. 12
[3] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Communication (Cambridge:Cambridge University) p. 13
[4] Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209
[5] Schrodinger E 1926 Phys. Rev. 28 1049
[6] Born M 1926 Z. Phys. 38 803
[7] Breuer H P and Petruccione F 2002 The theory of open quantum systems (Oxfor:Oxford University Press) p. 220
[8] Zurek W H 1991 Phys. Today 44 36
[9] Zurek W H 2003 Rev. Mod. Phys. 75 715
[10] Zurek W H 1981 Phys. Rev. D 24 1516
[11] Quan H T, Song Z, Liu X P, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[12] Rossini D, Calarco T, Giovannetti V, Montangero S and Fazio R 2007 Phys. Rev. A 75 032333
[13] Sun Z, Wang X G, Gao Y B and Sun C P 2008 Eur. Phys. J. D 46 521
[14] Joos E and Zeh H D 1985 Zeits. Phys. B 59 223
[15] Schrodinger E 1935 Naturwiss 23 807
[16] Schlosshauer M 2005 Rev. Mod. Phys. 76 1247
[17] Sun C P, Zhou D L, Yu S X and Liu X F 2001 Eur. Phys. J. D 13 145
[18] Sun C P, Zhou D L, Yu S X and Liu X F 2001 Eur. Phys. J. D 17 85
[19] Carazza C 1999 J. Phys. A 32 6619
[20] Pikovski I, Zych M, Costa F and Brukner C 2015 Nat. Phys. 11 668
[21] Peskin M E and Schroeder D V 1995 An Introduction to Quantum Field Theory (New York:Addison-Wesley) pp. 40-43
[22] Foldy L L and Wouthuysen S A 1950 Phys. Rev. 78 29
[23] Arndt M, Nairz O, Voss-Andreae J, Keller C, van der Zouw G and Zeilinger A 1999 Nature 401 680
[24] Paz J P, Habib S and Zurek W H 1993 Phys. Rev. D 47 488
[25] Fisher R A, Nieto M M and Sandberg V D 1984 Phys. Rev. D 29 1107
[26] Justin J Z 2005 Path integral in quantum mechanics (Oxford:Oxford University Press) pp. 2-4
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[3] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[4] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[5] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[6] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[7] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[8] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[9] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[10] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[11] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[12] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[13] Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory
Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧). Chin. Phys. B, 2018, 27(10): 100305.
[14] Superconducting phase qubits with shadow-evaporated Josephson junctions
Fei-Fan Su(宿非凡), Wei-Yang Liu(刘伟洋), Hui-Kai Xu(徐晖凯), Hui Deng(邓辉), Zhi-Yuan Li(李志远), Ye Tian(田野), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁), Li Lv(吕力), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2017, 26(6): 060308.
[15] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
No Suggested Reading articles found!