|
|
Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays |
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生) |
School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract In this paper, a modified sub-gridding scheme that hybridizes the conventional finite-difference time-domain (FDTD) method and the unconditionally stable locally one-dimensional (LOD) FDTD is developed for analyzing the periodic metallic nanoparticle arrays. The dispersion of the metal, caused by the evanescent wave propagating along the metal-dielectric interface, is expressed by the Drude model and solved with a generalized auxiliary differential equation (ADE) technique. In the sub-gridding scheme, the ADE-FDTD is applied to the global coarse grids while the ADE-LOD-FDTD is applied to the local fine grids. The time step sizes in the fine-grid region and coarse-grid region can be synchronized, and thus obviating the temporal interpolation of the fields in the time-marching process. Numerical examples about extraordinary optical transmission through the periodic metallic nanoparticle array are provided to show the accuracy and efficiency of the proposed method.
|
Received: 27 April 2018
Revised: 30 July 2018
Accepted manuscript online:
|
PACS:
|
02.70.Bf
|
(Finite-difference methods)
|
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
92.60.Ta
|
(Electromagnetic wave propagation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471105 and 61331007). |
Corresponding Authors:
Wei Shao
E-mail: weishao@uestc.edu.cn
|
Cite this article:
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生) Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays 2018 Chin. Phys. B 27 100204
|
[1] |
Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
|
[2] |
Porto J A, Garcia-Vidal F J and Pendry J B 1999 Phys. Rev. Lett. 83 2845
|
[3] |
Min C J, Wang P, Chen C C, Deng Y, Lu Y H, Ming H, Ning T Y, Zhou Y L and Yang G Z 2008 Opt. Lett. 33 869
|
[4] |
Khanikaev A B, Mousavi S H, Shvets G and Kivshar Y S 2010 Phys. Rev. Lett. 105 126804
|
[5] |
Moreno E, Martin-Moreno L and Garcia-Vidal F J 2006 J. Opt. A Pure Appl. Opt. 8 S94
|
[6] |
Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
|
[7] |
Liu H T and Lalanne P 2008 Nature 452 728
|
[8] |
Genet C and Ebbesen T W 2007 Nature 445 39
|
[9] |
Gordon R, Sinton D, Kavanagh K L and Brolo A G 2008 Acc. Chem. Res. 41 1049
|
[10] |
Yang J L, Li R P, Han J H and Huang M J 2016 Chin. Phys. B 25 083301
|
[11] |
Li Q B, Wu R X, Yang Y and Sun H L 2013 Chin. Phys. Lett. 30 074208
|
[12] |
Zhuan S X, Ma X K 2012 Acta Phys. Sin. 61 110206 (in Chinese)
|
[13] |
Li L Q, Shi Y X, Wang F and Wei B 2012 Acta Phys. Sin. 61 125201 (in Chinese)
|
[14] |
Taflove A and Hagness S C 2000 Computational Electrodynamics:The Finite-Difference Time-Domain Method (Norwood, MA:Artech House)
|
[15] |
Namiki T 1999 IEEE Trans. Microw. Theory Tech. 47 2003
|
[16] |
Zheng F H, Chen Z Z and Zhang J Z 1999 IEEE Microw. Guided Wave Lett. 9 441
|
[17] |
Lee J and Fornberg B 2003 J. Comput. Appl. Math. 158 485
|
[18] |
Lee J and Fornberg B 2004 J. Comput. Appl. Math. 166 497
|
[19] |
Gao L, Zhang B and Liang D 2007 J. Comput. Appl. Math. 205 207
|
[20] |
Shibayama J, Muraki M, Yamauchi J and Nakano H 2005 Electron. Lett. 41 1046
|
[21] |
Nascimento V E D, Borges B H V and Teixeira F L 2006 IEEE Microw. Wireless Compon. Lett. 16 398
|
[22] |
Wei X K, Shao W, Shi S B, Zhang Y and Wang B Z 2015 Chin. Phys. B 24 070203
|
[23] |
Sun G and Trueman C W 2004 IEEE Trans. Anten. Propag. 52 2963
|
[24] |
Sun G and Truneman C W 2006 IEEE Trans. Microw. Theory Tech. 54 2275
|
[25] |
Shi S B, Shao W, Wei X K, Yang X S and Wang B Z 2016 IEEE Microw. Theory Tech. 64 4082
|
[26] |
Ahmed I, Chua E K, Li E P and Chen Z Z 2008 IEEE Trans. Anten. Propag. 56 3596
|
[27] |
Zheng F and Chen Z 2001 IEEE Trans. Microw. Theory Tech. 49 1006
|
[28] |
Ahmed I, Chun E K and Li E P 2010 IEEE Trans. Anten. Propag. 58 3983
|
[29] |
Chevalier M W, Luebbers R J and Cable V P 1997 IEEE Trans. Anten. Propag. 45 411
|
[30] |
Wang B Z, Wang Y, Yu W and Mittra R 2001 IEEE Trans. Adv. Packag. 24 528
|
[31] |
Gray S K and Kupka T 2003 Phys. Rev. B 68 045415
|
[32] |
Liang T L, Shao W, Shi S B and Ou H 2016 IEEE Photon. J. 8 7804710
|
[33] |
Kulas L and Mrozowski M 2008 Proc. 38$th European Microwave Conf. 658
|
[34] |
Palik E D 1982 Handbook of optical constants in solids (Academic)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|