In this paper, a modified sub-gridding scheme that hybridizes the conventional finite-difference time-domain (FDTD) method and the unconditionally stable locally one-dimensional (LOD) FDTD is developed for analyzing the periodic metallic nanoparticle arrays. The dispersion of the metal, caused by the evanescent wave propagating along the metal-dielectric interface, is expressed by the Drude model and solved with a generalized auxiliary differential equation (ADE) technique. In the sub-gridding scheme, the ADE-FDTD is applied to the global coarse grids while the ADE-LOD-FDTD is applied to the local fine grids. The time step sizes in the fine-grid region and coarse-grid region can be synchronized, and thus obviating the temporal interpolation of the fields in the time-marching process. Numerical examples about extraordinary optical transmission through the periodic metallic nanoparticle array are provided to show the accuracy and efficiency of the proposed method.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.