Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100305    DOI: 10.1088/1674-1056/27/10/100305
GENERAL Prev   Next  

Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory

Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧)
School of Mechanical, Optoelectronics and Physics, Huaihua University, Huaihua 418008, China
Abstract  

We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by analyzing the phase-averaged kurtosis for two different models of decoherence:amplitude damping model and phase damping model. For the amplitude damping model, the non-Gaussianity is very fragile and completely vanishes at a finite time. For the phase damping model, such states exhibit rich non-Gaussian characters. In particular, we obtain a transition time that such states can transform from sub-Gaussianity into super-Gaussianity during the evolution. Finally, we compare our measure with the existing measures of non-Gaussianity under the independent dephasing environment.

Keywords:  non-Gaussianity      cumulants      squeezed number states      decoherence  
Received:  23 May 2018      Revised:  23 July 2018      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: 

Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2017JJ2214) and the Key Project Foundation of the Education Department of Hunan Province, China (Grant No. 14A114).

Corresponding Authors:  Shaohua Xiang     E-mail:  shxiang97@163.com

Cite this article: 

Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧) Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory 2018 Chin. Phys. B 27 100305

[1] Yang Y and Li F L 2009 Phys. Rev. A 80 022315
[2] Jiang K X 2013 Opt. Commun. 300 286
[3] Lasota M, Filip R and Usenko V C 2016 Phys. Rev. A 95 062312
[4] Bednorz A and Belzig W 2011 Phys. Rev. B 83 125304
[5] Straka I, Predojevic A, Huber T, Lachman L, Butschek L, Mikova M, Micuda M, Solomon G S, Weihs G, Jezek M and Filip R 2014 Phys. Rev. Lett. 113 223603
[6] Genoni M G, Paris M G A and Banaszek K 2007 Phys. Rev. A 76 042327
[7] Genoni M G and Paris M G A 2010 Phys. Rev. A 82 052341
[8] Tang X B, Gao F, Wang Y X, Kuang S and Shuang F 2015 Chin. Phys. B 24 034208
[9] Taghiabadi R, Akhtarshenas S J and Sarbishaei M 2016 Quantum Infor. Process. 15 1999
[10] Park J, Lee J, Ji S W and Nha H 2017 Phys. Rev. A 96 052324
[11] Thiele T N 1903 Theory of Observations (London:Charles and Edwin Layton)
[12] Fisher R A and Wishart J 1932 Proc. London Math. Soc. 2 199
[13] Kendall M G and Stuart A 1963 The Advanced Theory of Statistics (London:Charles Griffin and Company Limited)
[14] Huber P J 1985 Projection pursuit, Annal. Stat. 13 435
[15] Mardia K V 1970 Biometrika 57 519
[16] Oja H 1983 Statis. Probab. Lett. 1 327
[17] Looney S W 1995 American Statis. 49 64
[18] Mustafa H and Doroslovacki M 2008 Eur. Trans. Telecomms. 19 23
[19] Wunsche A 2015 Phys. Scr. 90 07400323
[20] Dubost B, Koschorreck M, Napolitano M, Behbood N, Sewell R J and Mitchell M W 2012 Phys. Rev. Lett. 108 183602
[21] Moreno-Cardoner M, Sherson J F, and De Chiara G 2016 New J. Phys. 18 103015
[22] Olsen M K and Corney J F 2013 Phys. Rev. A 87 033839
[23] Zhuang Q T, Peter Shor P W and Shapiro J H 2018 Phys. Rev. A 97 052317
[24] Takagi R and Zhuang Q T 2018 arXiv:1804.04669v2[quant-ph]
[25] Albarelli F, Genoni M G and Paris M G A 2018 arXiv:1804.05763v1[quant-ph]
[26] Chizhow A V and Murzakhmetov B K 1993 Phys. Lett. A 176 33
[27] Dell'Anno F, Siena S De and Illuminati F 2006 Open Sys. and Inform. 13 383
[28] Cahill K E and Glauber R J 1969 Phys. Rev. 177 1882
[29] Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (Oxford:Oxford University Press)
[30] Husimi K 1940 Proc. Phys. Math. Soc. Jpn. 22 264
[31] Wigner E P 1932 Phys. Rev. 40 749
[32] Glauber R J 1963 Phys. Rev. 131 2766
[33] Adesso G, Serafini A and Illuminati F 2006 Phys. Rev. A 73 032345
[34] Adesso G 2011 Phys. Rev. A 83 024301
[35] Vogel K and Risken H 1989 Phys. Rev. A 40 2847
[36] Villas-Boas C J, Prataviera G A and Moussa M H Y 2001 Phys. Rev. A 64 065801
[37] Marian P, Ghiu I and Marian T A 2013 Phys. Rev. A 88 012316
[38] Chen X Y 2006 Phys. Rev. A 73 022307
[39] Jiang L Z 2010 Proc. SPIE 7846 784612
[40] Nielsen M and Chuang I 2000 Quantum Computation and Quantum communication (Cambridge:Cambridge University Press)
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[3] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[4] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[5] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[6] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[7] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[8] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[9] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[10] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[11] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[12] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[13] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[14] Decoherence of macroscopic objects from relativistic effect
Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞). Chin. Phys. B, 2018, 27(10): 100301.
[15] Superconducting phase qubits with shadow-evaporated Josephson junctions
Fei-Fan Su(宿非凡), Wei-Yang Liu(刘伟洋), Hui-Kai Xu(徐晖凯), Hui Deng(邓辉), Zhi-Yuan Li(李志远), Ye Tian(田野), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁), Li Lv(吕力), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2017, 26(6): 060308.
No Suggested Reading articles found!