|
|
Superconducting phase qubits with shadow-evaporated Josephson junctions |
Fei-Fan Su(宿非凡)1,2, Wei-Yang Liu(刘伟洋)1,2, Hui-Kai Xu(徐晖凯)1,2, Hui Deng(邓辉)1, Zhi-Yuan Li(李志远)1,3, Ye Tian(田野)1, Xiao-Bo Zhu(朱晓波)4, Dong-Ning Zheng(郑东宁)1, Li Lv(吕力)1, Shi-Ping Zhao(赵士平)1,2,5 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences(CAS), Beijing 100049, China; 3 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; 4 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 5 Collaborative Innovation Center of Quantum Matter, Beijing, China |
|
|
Abstract We develop a fabrication process for the superconducting phase qubits in which Josephson junctions for both the qubit and superconducting quantum interference device (SQUID) detector are prepared by shadow evaporation with a suspended bridge. Al junctions with areas as small as 0.05 μ2 are fabricated for the qubit, in which the number of the decoherence-causing two-level systems (TLS) residing in the tunnel barrier and proportional to the junction area are greatly reduced. The measured energy spectrum shows no avoided crossing arising from coherent TLS in the experimentally reachable flux bias range of the phase qubit, which demonstrates the energy relaxation time T1 and dephasing time Tφ on the order of 100 ns and 50 ns, respectively. We discuss several possible origins of decoherence from incoherent or weakly-coupled coherent TLS and further improvements of the qubit performance.
|
Received: 13 January 2017
Revised: 28 February 2017
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
85.25.Cp
|
(Josephson devices)
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB921202, 2015CB921104, and 2016YFA0300601) and the National Natural Science Foundation of China (Grant Nos. 91321208 and 11674380). |
Corresponding Authors:
Shi-Ping Zhao
E-mail: spzhao@iphy.ac.cn
|
Cite this article:
Fei-Fan Su(宿非凡), Wei-Yang Liu(刘伟洋), Hui-Kai Xu(徐晖凯), Hui Deng(邓辉), Zhi-Yuan Li(李志远), Ye Tian(田野), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁), Li Lv(吕力), Shi-Ping Zhao(赵士平) Superconducting phase qubits with shadow-evaporated Josephson junctions 2017 Chin. Phys. B 26 060308
|
[1] |
Clarke J and Wilhelm F K 2008 Nature 453 1031
|
[2] |
Devoret M H and Schoelkopf R J 2013 Science 339 1169
|
[3] |
You J Q and Nori F 2011 Nature 474 589
|
[4] |
Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
|
[5] |
Simmonds R W, Lang K M, Hite D A, Nam S, Pappas D P and Martinis J M 2004 Phys. Rev. Lett. 93 077003
|
[6] |
Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds RW and Yu C C 2005 Phys. Rev. Lett. 95 210503
|
[7] |
Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Katz N, Lucero E, O'Connell A, Wang H, Cleland A N and Martinis J 2008 Phys. Rev. B 77 180508
|
[8] |
Martinis J M 2009 Quantum Inf. Process. 8 81
|
[9] |
Weides M, Bialczak R C, Lenander M, Lucero E, Mariantoni M, Neeley M, O'Connell A D, Sank D, Wang H, Wenner J, Yamamoto T, Yin Y, Cleland A N and Martinis J 2011 Supercond. Sci. Technol. 24 055005
|
[10] |
Lecocq F, Pop I M, Peng Z H, Matei I, Crozes T, Fournier T, Naud C, Guichard W and Buisson O 2011 Nanotechnology 22 315302
|
[11] |
Sank D, Barends R, Bialczak R C, Chen Y, Kelly J, Lenander M, Lucero E, Mariantoni M, Megrant A, Neeley M, O'Malley P J J, Vainsencher A, Wang H, Wenner J, White T C, Yamamoto T, Yin Y, Cleland A N and Martinis J M 2012 Phys. Rev. Lett. 109 067001
|
[12] |
Whittaker J D, da Silva F C S, Allman M S, Lecocq F, Cicak K, Sirois A J, Teufel J D, Aumentado J and Simmonds R W 2014 Phys. Rev. B 90 024513
|
[13] |
Martinis J M and Megrant A 2014 arXiv: 1410.5793
|
[14] |
Tan X S, Yu H F, Yu Y and Han S 2015 Appl. Phys. Lett. 107 102601
|
[15] |
Lecocq F, Teufel J D, Aumentado J and Simmonds R W 2015 Nat. Phys. 11 635
|
[16] |
Lisenfeld Jürgen, Grabovskij Grigorij J, Müller Clemens, Cole Jared H, Weiss Georg and Ustinov Alexey V 2015 Nat. Commun. 6 6182
|
[17] |
Lisenfeld Jürgen, Bilmes Alexander, Matityahu Shlomi, Zanker Sebastian, Marthaler Michael, Schechter Moshe, Schön Gerd, Shnirman Alexander, Weiss Georg and Ustinov Alexey V 2016 Sci. Rep. 6 23786
|
[18] |
Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 6730
|
[19] |
Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D, and Devoret M H 2002 Science 396 886
|
[20] |
Orlando T P, Mooij J E, Tian L, van der Wal C H, Levitov L S, Lloyd S and Mazo J J 1999 Phys. Rev. B 60 15398
|
[21] |
Chiorescu I, Nakamura Y, Harmans C J P M and Mooij J E 2003 Science 299 1869
|
[22] |
Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
|
[23] |
Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
|
[24] |
Tian Ye, Yu H F, Deng H, Xue G M, Liu D T, Ren Y F, Chen G H, Zheng D N, Jing X N, Lu Li, Zhao S P and Han Siyuan 2012 Rev. Sci. Instrum. 83 033907
|
[25] |
Mao Bo 2010 "Coherent Manipulation of Multi-Partite Quantum States in a Qubit-TLS System via Landau-Zener Transition", Ph. D thesis, University of Kansas
|
[26] |
Dutta P, Adhikari S and Bhattacharyya S P 1993 Chem. Phys. Lett. 212 677
|
[27] |
Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R C, Lenander M, Lucero Erik, Neeley M, O'Connell A D, Sank D, Weides M, Cleland A N and Martinisa J M 2009 Appl. Phys. Lett. 95 233508
|
[28] |
Wenner J, Barends R, Bialczak R C, Chen Yu, Kelly J, Lucero Erik, Matteo Mariantoni, Megrant A, O'Malley P J J, Sank D, Vainsencher A, Wang H, White T C, Yin Y, Zhao J, Cleland A N and Martinis J M 2011 Appl. Phys. Lett. 99 113513
|
[29] |
Sage Jeremy M, Bolkhovsky Vladimir, Oliver William D, Turek Benjamin and Welander Paul B 2011 J. Appl. Phys. 109 063915
|
[30] |
Megrant A, Neill C, Barends R, Chiaro B, Chen Yu, Feigl L, Kelly J, Lucero Erik, Mariantoni Matteo, O'Malley P J J, Sank D, Vainsencher A, Wenner J, White T C, Yin Y, Zhao J, Palmstrfm C J, Martinis John M and Cleland A N 2012 Appl. Phys. Lett. 100 113510
|
[31] |
Bruno A, de Lange G, Asaad S, van der Enden K L, Langford N K and DiCarlo L 2015 Appl. Phys. Lett. 106 182601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|