Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060308    DOI: 10.1088/1674-1056/26/6/060308
GENERAL Prev   Next  

Superconducting phase qubits with shadow-evaporated Josephson junctions

Fei-Fan Su(宿非凡)1,2, Wei-Yang Liu(刘伟洋)1,2, Hui-Kai Xu(徐晖凯)1,2, Hui Deng(邓辉)1, Zhi-Yuan Li(李志远)1,3, Ye Tian(田野)1, Xiao-Bo Zhu(朱晓波)4, Dong-Ning Zheng(郑东宁)1, Li Lv(吕力)1, Shi-Ping Zhao(赵士平)1,2,5
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences(CAS), Beijing 100049, China;
3 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
4 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
5 Collaborative Innovation Center of Quantum Matter, Beijing, China
Abstract  We develop a fabrication process for the superconducting phase qubits in which Josephson junctions for both the qubit and superconducting quantum interference device (SQUID) detector are prepared by shadow evaporation with a suspended bridge. Al junctions with areas as small as 0.05 μ2 are fabricated for the qubit, in which the number of the decoherence-causing two-level systems (TLS) residing in the tunnel barrier and proportional to the junction area are greatly reduced. The measured energy spectrum shows no avoided crossing arising from coherent TLS in the experimentally reachable flux bias range of the phase qubit, which demonstrates the energy relaxation time T1 and dephasing time Tφ on the order of 100 ns and 50 ns, respectively. We discuss several possible origins of decoherence from incoherent or weakly-coupled coherent TLS and further improvements of the qubit performance.
Keywords:  superconducting phase qubit      two-level system      decoherence      shadow evaporated junction  
Received:  13 January 2017      Revised:  28 February 2017      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  85.25.Cp (Josephson devices)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB921202, 2015CB921104, and 2016YFA0300601) and the National Natural Science Foundation of China (Grant Nos. 91321208 and 11674380).
Corresponding Authors:  Shi-Ping Zhao     E-mail:  spzhao@iphy.ac.cn

Cite this article: 

Fei-Fan Su(宿非凡), Wei-Yang Liu(刘伟洋), Hui-Kai Xu(徐晖凯), Hui Deng(邓辉), Zhi-Yuan Li(李志远), Ye Tian(田野), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁), Li Lv(吕力), Shi-Ping Zhao(赵士平) Superconducting phase qubits with shadow-evaporated Josephson junctions 2017 Chin. Phys. B 26 060308

[1] Clarke J and Wilhelm F K 2008 Nature 453 1031
[2] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[3] You J Q and Nori F 2011 Nature 474 589
[4] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[5] Simmonds R W, Lang K M, Hite D A, Nam S, Pappas D P and Martinis J M 2004 Phys. Rev. Lett. 93 077003
[6] Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds RW and Yu C C 2005 Phys. Rev. Lett. 95 210503
[7] Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Katz N, Lucero E, O'Connell A, Wang H, Cleland A N and Martinis J 2008 Phys. Rev. B 77 180508
[8] Martinis J M 2009 Quantum Inf. Process. 8 81
[9] Weides M, Bialczak R C, Lenander M, Lucero E, Mariantoni M, Neeley M, O'Connell A D, Sank D, Wang H, Wenner J, Yamamoto T, Yin Y, Cleland A N and Martinis J 2011 Supercond. Sci. Technol. 24 055005
[10] Lecocq F, Pop I M, Peng Z H, Matei I, Crozes T, Fournier T, Naud C, Guichard W and Buisson O 2011 Nanotechnology 22 315302
[11] Sank D, Barends R, Bialczak R C, Chen Y, Kelly J, Lenander M, Lucero E, Mariantoni M, Megrant A, Neeley M, O'Malley P J J, Vainsencher A, Wang H, Wenner J, White T C, Yamamoto T, Yin Y, Cleland A N and Martinis J M 2012 Phys. Rev. Lett. 109 067001
[12] Whittaker J D, da Silva F C S, Allman M S, Lecocq F, Cicak K, Sirois A J, Teufel J D, Aumentado J and Simmonds R W 2014 Phys. Rev. B 90 024513
[13] Martinis J M and Megrant A 2014 arXiv: 1410.5793
[14] Tan X S, Yu H F, Yu Y and Han S 2015 Appl. Phys. Lett. 107 102601
[15] Lecocq F, Teufel J D, Aumentado J and Simmonds R W 2015 Nat. Phys. 11 635
[16] Lisenfeld Jürgen, Grabovskij Grigorij J, Müller Clemens, Cole Jared H, Weiss Georg and Ustinov Alexey V 2015 Nat. Commun. 6 6182
[17] Lisenfeld Jürgen, Bilmes Alexander, Matityahu Shlomi, Zanker Sebastian, Marthaler Michael, Schechter Moshe, Schön Gerd, Shnirman Alexander, Weiss Georg and Ustinov Alexey V 2016 Sci. Rep. 6 23786
[18] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 6730
[19] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D, and Devoret M H 2002 Science 396 886
[20] Orlando T P, Mooij J E, Tian L, van der Wal C H, Levitov L S, Lloyd S and Mazo J J 1999 Phys. Rev. B 60 15398
[21] Chiorescu I, Nakamura Y, Harmans C J P M and Mooij J E 2003 Science 299 1869
[22] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[23] Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
[24] Tian Ye, Yu H F, Deng H, Xue G M, Liu D T, Ren Y F, Chen G H, Zheng D N, Jing X N, Lu Li, Zhao S P and Han Siyuan 2012 Rev. Sci. Instrum. 83 033907
[25] Mao Bo 2010 "Coherent Manipulation of Multi-Partite Quantum States in a Qubit-TLS System via Landau-Zener Transition", Ph. D thesis, University of Kansas
[26] Dutta P, Adhikari S and Bhattacharyya S P 1993 Chem. Phys. Lett. 212 677
[27] Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R C, Lenander M, Lucero Erik, Neeley M, O'Connell A D, Sank D, Weides M, Cleland A N and Martinisa J M 2009 Appl. Phys. Lett. 95 233508
[28] Wenner J, Barends R, Bialczak R C, Chen Yu, Kelly J, Lucero Erik, Matteo Mariantoni, Megrant A, O'Malley P J J, Sank D, Vainsencher A, Wang H, White T C, Yin Y, Zhao J, Cleland A N and Martinis J M 2011 Appl. Phys. Lett. 99 113513
[29] Sage Jeremy M, Bolkhovsky Vladimir, Oliver William D, Turek Benjamin and Welander Paul B 2011 J. Appl. Phys. 109 063915
[30] Megrant A, Neill C, Barends R, Chiaro B, Chen Yu, Feigl L, Kelly J, Lucero Erik, Mariantoni Matteo, O'Malley P J J, Sank D, Vainsencher A, Wenner J, White T C, Yin Y, Zhao J, Palmstrfm C J, Martinis John M and Cleland A N 2012 Appl. Phys. Lett. 100 113510
[31] Bruno A, de Lange G, Asaad S, van der Enden K L, Langford N K and DiCarlo L 2015 Appl. Phys. Lett. 106 182601
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[3] Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳). Chin. Phys. B, 2021, 30(9): 094203.
[4] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[5] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[6] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[7] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[8] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[9] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[10] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[11] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[12] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[13] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[14] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[15] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
No Suggested Reading articles found!