Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 098801    DOI: 10.1088/1674-1056/27/9/098801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Potentials of classical force fields for interactions between Na+ and carbon nanotubes

De-Yuan Li(李德远)1,2, Guo-Sheng Shi(石国升)1,2, Feng Hong(洪峰)1, Hai-Ping Fang(方海平)1,2
1 Department of Physics and Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China;
2 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  

Carbon nanotubes (CNTs) have long been expected to be excellent nanochannels for use in desalination membranes and other bio-inspired human-made channels owing to their experimentally confirmed ultrafast water flow and theoretically predicted ion rejection. The correct classical force field potential for the interactions between cations and CNTs plays a crucial role in understanding the transport behaviors of ions near and inside the CNT, which is key to these expectations. Here, using density functional theory calculations, we provide classical force field potentials for the interactions of Na+/hydrated Na+ with (7,7), (8,8), (9,9), and (10,10)-type CNTs. These potentials can be directly used in current popular classical software such as nanoscale molecular dynamics (NAMD) by employing the tclBC interface. By incorporating the potential of hydrated cation-π interactions to classical all-atom force fields, we show that the ions will move inside the CNT and accumulate, which will block the water flow in wide CNTs. This blockage of water flow in wide CNTs is consistent with recent experimental observations. These results will be helpful for the understanding and design of desalination membranes, new types of nanofluidic channels, nanosensors, and nanoreactors based on CNT platforms.

Keywords:  carbon nanotube      density functional theory      force field      molecular dynamics simulation  
Received:  11 May 2018      Revised:  07 June 2018      Accepted manuscript online: 
PACS:  88.30.rh (Carbon nanotubes)  
  31.15.E (Density-functional theory)  
  87.10.Tf (Molecular dynamics simulation)  
Fund: 
Project supported by the National Science Fund for Outstanding Young Scholars of China (Grant No. 11722548) and the National Natural Science Foundation of China (Grant Nos. 11574339 and 11404361).
Corresponding Authors:  Guo-Sheng Shi, Feng Hong     E-mail:  gsshi@shu.edu.cn;fenghong@shu.edu.cn

Cite this article: 

De-Yuan Li(李德远), Guo-Sheng Shi(石国升), Feng Hong(洪峰), Hai-Ping Fang(方海平) Potentials of classical force fields for interactions between Na+ and carbon nanotubes 2018 Chin. Phys. B 27 098801

[1] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J and Mayes A M 2008 Nature 452 301
[2] Elimelech M and Phillip W A 2011 Science 333 712
[3] Liu J, Shi G S, Guo P, Yang J R and Fang H P 2015 Phys. Rev. Lett. 115 164502
[4] Whitby M and Quirke N 2007 Nat. Nanotechnol. 2 87
[5] Liu J, Shi G S and Fang H P 2017 Nanotechnology 28 084004
[6] Moradi F, Ganji M D and Sarrafi Y 2017 Phys. Chem. Chem. Phys. 19 8388
[7] Wan R Z, Li J Y, Lu H J and Fang H P 2005 J. Am. Chem. Soc. 127 7166
[8] Li J Y, Gong X J, Lu H J, Li D, Fang H P and Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687
[9] Vuković L, Vokac E and Král P 2014 J. Phys. Chem. Lett. 5 2131
[10] Bocquet L and Charlaix E 2010 Chem. Soc. Rev. 39 1073
[11] Su J Y, Zhao Y Z, Fang C, Ahmed S B and Shi Y 2017 Phys. Chem. Chem. Phys. 19 22406
[12] Qin X C, Yuan Q Z, Zhao Y P, Xie S B and Liu Z F 2011 Nano Lett. 11 2173
[13] Howorka S and Siwy Z 2009 Chem. Soc. Rev. 38 2360
[14] Bianco A, Kostarelos K and Prato M 2005 Curr. Opin. Chem. Biol. 9 674
[15] Zang J L, Yuan Q Z, Wang F C and Zhao Y P 2009 Comput. Mater. Sci. 46 621
[16] Hilder T A and Hill J M 2009 Small 5 300
[17] Tasis D, Tagmatarchis N, Bianco A and Prato M 2006 Chem. Rev. 106 1105
[18] Meng S, Wang W L, Maragakis P and Kaxiras E 2007 Nano Lett. 7 2312
[19] Zhao Y and Truhlar D G 2007 J. Am. Chem. Soc. 129 8440
[20] Yuan Q Z and Zhao Y P 2009 Biomicrofluidics 3 6
[21] Yuan Q Z and Zhao Y P 2009 J. Am. Chem. Soc. 131 6374
[22] Garcia-Fandiño R and Sansom M S P 2012 Proc. Natl. Acad. Sci. USA 109 6939
[23] Yang L H, Gordon V D, Trinkle D R, Schmidt N W, Davis M A, DeVries C, Som A, Cronan J E, Tew G N and Wong G C L 2008 Proc. Natl. Acad. Sci. USA 105 20595
[24] Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188
[25] Kalra A, Garde S and Hummer G 2003 Proc. Natl. Acad. Sci. USA 100 10175
[26] Striolo A 2006 Nano Lett. 6 633
[27] Tu Y S, Xiu P, Wan R Z, Hu J, Zhou R H and Fang H P 2009 Proc. Natl. Acad. Sci. USA 106 18120
[28] Falk K, Sedlmeier F, Joly L, Netz R R and Bocquet L 2010 Nano Lett. 10 4067
[29] Majumder M, Chopra N, Andrews R and Hinds B J 2005 Nature 438 44
[30] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[31] Corry B 2008 J. Phys. Chem. B 112 1427
[32] Jia Y X, Li H L, Wang M, Wu L Y and Hu Y D 2010 Sep. Purif. Technol. 75 55
[33] Secchi E, Marbach S, Nigues A, Stein D, Siria A and Bocquet L 2016 Nature 537 210
[34] Lee C Y, Choi W, Han J and Strano M S 2010 Science 329 1320
[35] Choi W, Lee C Y, Ham M, Shimizu S and Strano M S 2011 J. Am. Chem. Soc. 133 203
[36] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[37] Frisch G W T M J, Schlegel H B, Scuseria G E, et al. 2009 Gaussian 09 (Revision A. 01) (Wallingford CT:Gaussian Inc)
[38] Shi G S, Ding Y H and Fang H P 2012 J. Comput. Chem. 33 1328
[39] Shi G S, Chen L, Yang Y Z, Li D Y, Qian Z, Liang S S, Yan L, Li L H, Wu M H and Fang H P 2018 Nat. Chem. 10 776
[40] Gao S H, Shi G S and Fang H P 2016 Nanoscale 8 1451
[41] Chen L, Shi G S, Shen J, Peng B, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, Xu G, Liu G P, Zeng J R, Zhang L J, Yang Y Z, Zhou G Q, Wu M H, Jin W Q, Li J Y and Fang H P 2017 Nature 550 380
[42] Shi G S, Dang Y R, Pan T T, Liu X, Liu H, Li S X, Zhang L J, Zhao H W, Li S P, Han J G, Tai R Z, Zhu Y M, Li J C, Ji Q, Mole R A, Yu D H and Fang H P 2016 Phys. Rev. Lett. 117 238102
[43] Lyu G X, Shi G S, Tang L, Fang H P and Wu M H 2017 Phys. Chem. Chem. Phys. 19 9354
[44] Shi G S, Yang J R, Ding Y H and Fang H P 2014 ChemPhysChem. 15 2588
[45] Yang J R, Shi G S, Tu Y S and Fang H P 2014 Angew. Chem. Int. Ed. 53 10190
[46] Shi G S, Liu J, Wang C L, Song B, Tu Y S, Hu J and Fang H P 2013 Sci. Rep. 3 3436
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[7] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[10] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[11] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[12] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[13] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[14] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[15] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
No Suggested Reading articles found!