Special Issue:
SPECIAL TOPIC — Nanophotonics
|
|
|
MoS2 saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser |
Meng-Li Liu(刘孟丽)1, Yu-Yi OuYang(欧阳毓一)1, Huan-Ran Hou(侯焕然)1, Ming Lei(雷鸣)1, Wen-Jun Liu(刘文军)1,2, Zhi-Yi Wei(魏志义)2 |
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.
|
Received: 25 April 2018
Revised: 20 May 2018
Accepted manuscript online:
|
PACS:
|
42.70.Mp
|
(Nonlinear optical crystals)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Gd
|
(Q-switching)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674036), the Beijing Youth Top-notch Talent Support Program, China (Grant No. 2017000026833ZK08), the Fund of State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, China (Grant Nos. IPOC2016ZT04 and IPOC2017ZZ05). |
Corresponding Authors:
Wen-Jun Liu, Zhi-Yi Wei
E-mail: jungliu@bupt.edu.cn;zywei@iphy.ac.cn
|
Cite this article:
Meng-Li Liu(刘孟丽), Yu-Yi OuYang(欧阳毓一), Huan-Ran Hou(侯焕然), Ming Lei(雷鸣), Wen-Jun Liu(刘文军), Zhi-Yi Wei(魏志义) MoS2 saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser 2018 Chin. Phys. B 27 084211
|
[1] |
Keller U 2003 Nature 424 831
|
[2] |
Okhotnikov O, Grudinin A and Pessa M 2004 New J. Phys. 6 177
|
[3] |
Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
|
[4] |
Liu W J, Liu M L, Yin J D, Chen H, Lu W, Fang S B, Teng H, Lei M, Yan P G and Wei Z Y 2018 Nanoscale 10 7971
|
[5] |
Liu W J, Liu M L, OuYang Y Y, Hou H R, Ma G L, Lei M and Wei Z Y 2018 Nanotechnology 29 174002
|
[6] |
Zhang H, Bao Q L, Tang D Y, Zhao L M and Loh K P 2009 Appl. Phys. Lett. 95 141103
|
[7] |
Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803
|
[8] |
Luo A P, Zhu P F, Liu H, Zheng X W, Zhao N, Liu M, Cui H, Luo Z C and Xu W C 2014 Opt. Express 22 27019
|
[9] |
Sotor J, Bogusławski J, Martynkien T, Mergo P, Krajewska A, Przewłoka A, StrupiŃski W and SoboŃ G 2017 Opt. Lett. 42 1592
|
[10] |
Luo Z Q, Liu C, Huang Y Z, Wu D D, Wu J Y, Xu H Y, Cai Z P, Lin Z Q, Sun L P and Weng J 2014 IEEE J. Sel. Top. Quantum Electron. 20 0902708
|
[11] |
Sotor J, Sobon G, Grodecki K and Abramski K M 2014 Appl. Phys. Lett. 104 251112
|
[12] |
Liu H, Zheng X W, Liu M, Zhao N, Luo A P, Luo Z C, Xu W C, Zhang H, Zhao C J and Wen S C 2014 Opt. Express 22 6868
|
[13] |
Liu W J, Pang L H, Han H N, Tian W L, Chen H, Lei M, Yan P G and Wei Z Y 2016 Sci. Rep. 6 19997
|
[14] |
Sotor J, Sobon G, Macherzynski W, Paletko P and Abramski K M 2015 Appl. Phys. Lett. 107 051108
|
[15] |
Hu G H, Albrow-Owen T, Jin X X, Ali A, Hu Y W, Howe R C T, Shehzad K, Yang Z Y, Zhu X K, Woodward R I, Wu T C, Jussila H, Wu J B, Peng P, Tan P H, Sun Z P, Kelleher E J R, Zhang M, Xu Y and Hasan T 2017 Nat. Commun. 8 278
|
[16] |
Li J F, Luo H Y, Zhai B, Lu R G, Guo Z N, Zhang H and Liu Y 2016 Sci. Rep. 6 30361
|
[17] |
Liu S C, Zhang Y N, Li L, Wang Y G, Lv R D, Wang X, Chen Z D and Wei L L 2018 Appl. Opt. 57 1292
|
[18] |
Yun L 2017 Opt. Express 25 32380
|
[19] |
Xu Y H, Wang Z T, Guo Z N, Huang H, Xiao Q L and Zhang H 2016 Adv. Opt. Mater. 4 1223
|
[20] |
Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y and Zhang H 2018 Laser Photon. Rev. 12 1700229
|
[21] |
Li W Y, OuYang Y Y, Ma G L, Liu M L and Liu W J 2018 Laser Phys. 28 055104
|
[22] |
Liu W J, Liu M L, Lei M, Fang S B and Wei Z Y 2018 IEEE J. Sel. Top. Quantum Electron. 24 0901005
|
[23] |
Yang C Y, Li W Y, Yu W T, Liu M L, Zhang Y J, Ma G L, Lei M and Liu W J 2018 Nonlinear Dyn. 92 203
|
[24] |
Zhang M, Howe R C T, Woodward R I, Kelleher E J R, Torrisi F, Hu G H, Popov S V, Taylor J R and Hasan T 2015 Nano Res. 8 1522
|
[25] |
Pumera M, Sofer Z and Ambrosi A 2014 J. Mater. Chem. A 2 8981
|
[26] |
Yan P G, Liu A J, Chen Y S, Chen H, Ruan S C, Guo C Y, Chen S F, Li I L, Yang H P, Hu J G and Cao G Z 2015 Opt. Mater. Express 5 479
|
[27] |
Li W Y, Ma G L, Yu W T, Zhang Y J, Liu M L, Yang C Y and Liu W J 2018 Chin. Phys. B 27 030504
|
[28] |
Liu M L, Liu W J, Yan P G, Fang S B, Teng H and Wei Z Y 2018 Chin. Opt. Lett. 16 020007
|
[29] |
Yu W T, Yang C Y, Liu M L, Zhang Y J and Liu W J 2018 Optik 159 21
|
[30] |
Huang X, Zeng Z Y and Zhang H 2013 Chem. Soc. Rev. 42 1934
|
[31] |
Wang J T, Jiang Z K, Chen H, Li J R, Yin J D, Wang J Z, He T C, Yan P G and Ruan S C 2017 Opt. Lett. 42 5010
|
[32] |
Liu W J, Pang L H, Han H N, Shen Z W, Lei M, Teng H and Wei Z Y 2016 Photon. Res. 4 111
|
[33] |
Zhang M, Hu G H, Hu G Q, Howe R C T, Chen L, Zheng Z and Hasan T 2015 Sci. Rep. 5 17482
|
[34] |
Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M and Wei Z Y 2018 Photon. Res. 6 220
|
[35] |
Liu M L, Liu W J, Pang L H, Teng H, Fang S B and Wei Z Y 2018 Opt. Commun. 406 72
|
[36] |
Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J and Lei M 2017 Phys. Rev. E 96 042201
|
[37] |
Mao D, She X Y, Du B B, Yang D X, Zhang W D, Song K, Cui X Q, Jiang B Q, Peng T and Zhao J L 2016 Sci. Rep. 6 23583
|
[38] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[39] |
Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Castro Neto A H and Novoselov K S 2013 Science 340 1311
|
[40] |
Du J, Wang Q K, Jiang G B, Xu C W, Zhao C J, Xiang Y J, Chen Y, Wen S C and Zhang H 2015 Sci. Rep. 4 6346
|
[41] |
Zhang H, Lu S B, Zheng J, Du J, Wen S C, Tang D Y and Loh K P 2014 Opt. Express 22 7249
|
[42] |
Wang S X, Yu H H, Zhang H J, Wang A Z, Zhao M W, Chen Y X, Mei L M and Wang J Y 2014 Adv. Mater. 26 3538
|
[43] |
Chen B H, Zhang X Y, Wu K, Wang H, Wang J and Chen J P 2015 Opt. Express 23 26723
|
[44] |
Wang K P, Wang Jun, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L and Blau W J 2013 ACS Nano 7 9260
|
[45] |
Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 12823
|
[46] |
Aiub E J, Steinberg D, de Souza E A T and Saito L A M 2017 Opt. Express 25 10546
|
[47] |
Wu K, Zhang X Y, Wang J, Li X and Chen J P 2015 Opt. Express 23 11453
|
[48] |
Koo J, Park J, Lee J, Jhon Y M and Lee J H 2016 Opt. Express 24 10575
|
[49] |
Guo B, Yao Y, Yan P G, Xu K, Liu J J, Wang S G and Li Yuan 2016 IEEE Photon. Technol. Lett. 28 323
|
[50] |
Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H and Wei Z Y 2017 Opt. Express 25 2950
|
[51] |
Yan P G, Chen H, Yin J D, Xu Z H, Li J R, Jiang Z K, Zhang W F, Wang J Z, Li I L, Sun Z and Ruan S C 2017 Nanoscale 9 1871
|
[52] |
Zhao L M, Tang D Y, Zhang H, Wu X, Bao Q L and Loh K P 2010 Opt. Lett. 35 3622
|
[53] |
Chen H, Chen Y S, Yin J D, Zhang X J, Guo T and Yan P G 2016 Opt. Express 24 16287
|
[54] |
Yan P G, Lin R Y, Ruan S C, Liu A J and Chen H 2015 Opt. Express 23 154
|
[55] |
Wu K, Chen B H, Zhang X Y, Zhang S F, Guo C S, Li C, Xiao P S, Wang J, Zhou L J, Zou W W and Chen J P 2018 Opt. Commun. 406 214
|
[56] |
Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
|
[57] |
Zhao Y Y, Luo X, Li H, Zhang J, Araujo P T, Gan C K, Wu J, Zhang H, Quek S Y and Dresselhaus M S 2013 Nano Lett. 13 1007
|
[58] |
Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695
|
[59] |
Lou F, Zhao R W, He J L, Jia Z T, Su Xi C, Wang Z W, Hou J and Zhang B T 2015 Photon. Res. 3 A25
|
[60] |
Luo Z C, Wang F Z, Liu H, Liu M, Tang R, Luo A P and Xu W C 2016 Opt. Eng. 55 081308
|
[61] |
Huang Y Z, Luo Z Q, Li Y Y, Zhong M, Xu B, Che K J, Xu H Y, Cai Z P, Peng J and Weng J 2014 Opt. Express 22 25258
|
[62] |
Woodward R I, Kelleher E J R, Howe R C T, Hu G, Torrisi F, Hasan T, Popov S V and Taylor J R 2014 Opt. Express 22 31113
|
[63] |
Luo Z Q, Huang Y Z, Zhong M, Li Y Y, Wu J Y, Xu B, Xu H Y, Cai Z P, Peng J and Weng 2014 J. Lightwave Technol. 32 4077
|
[64] |
Ren J, Wang S X, Cheng Z C, Yu H H, Zhang H J, Chen Y X, Mei L M and Wang P 2015 Opt. Express 23 5607
|
[65] |
Xia H D, Li H P, Lan C Y, Li C, Zhang X X, Zhang S J and Liu Y 2014 Opt. Express 22 17341
|
[66] |
Xia H D, Li H P, Lan C Y, Li C, Du J B, Zhang S J and LiuY 2015 Photon. Res. 3 A92
|
[67] |
Chen H, Li L, Ruan S C, Guo T and Yan P G 2016 Opt. Eng. 55 081318
|
[68] |
Ahmad H, Suthaskumar M, Tiu Z C, Zarei A and Harun S W 2016 Opt. Laser Technol. 79 20
|
[69] |
Yu Z H, Song Y R, Tian J R, Dou Z Y, Guoyu H Y, Li K X, Li H W and Zhang X P 2014 Opt. Express 22 11508
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|