Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084211    DOI: 10.1088/1674-1056/27/8/084211
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

MoS2 saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser

Meng-Li Liu(刘孟丽)1, Yu-Yi OuYang(欧阳毓一)1, Huan-Ran Hou(侯焕然)1, Ming Lei(雷鸣)1, Wen-Jun Liu(刘文军)1,2, Zhi-Yi Wei(魏志义)2
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.

Keywords:  nonlinear optical materials      fiber laser      Q-switching  
Received:  25 April 2018      Revised:  20 May 2018      Accepted manuscript online: 
PACS:  42.70.Mp (Nonlinear optical crystals)  
  42.55.Wd (Fiber lasers)  
  42.60.Gd (Q-switching)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11674036), the Beijing Youth Top-notch Talent Support Program, China (Grant No. 2017000026833ZK08), the Fund of State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, China (Grant Nos. IPOC2016ZT04 and IPOC2017ZZ05).

Corresponding Authors:  Wen-Jun Liu, Zhi-Yi Wei     E-mail:  jungliu@bupt.edu.cn;zywei@iphy.ac.cn

Cite this article: 

Meng-Li Liu(刘孟丽), Yu-Yi OuYang(欧阳毓一), Huan-Ran Hou(侯焕然), Ming Lei(雷鸣), Wen-Jun Liu(刘文军), Zhi-Yi Wei(魏志义) MoS2 saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser 2018 Chin. Phys. B 27 084211

[1] Keller U 2003 Nature 424 831
[2] Okhotnikov O, Grudinin A and Pessa M 2004 New J. Phys. 6 177
[3] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[4] Liu W J, Liu M L, Yin J D, Chen H, Lu W, Fang S B, Teng H, Lei M, Yan P G and Wei Z Y 2018 Nanoscale 10 7971
[5] Liu W J, Liu M L, OuYang Y Y, Hou H R, Ma G L, Lei M and Wei Z Y 2018 Nanotechnology 29 174002
[6] Zhang H, Bao Q L, Tang D Y, Zhao L M and Loh K P 2009 Appl. Phys. Lett. 95 141103
[7] Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803
[8] Luo A P, Zhu P F, Liu H, Zheng X W, Zhao N, Liu M, Cui H, Luo Z C and Xu W C 2014 Opt. Express 22 27019
[9] Sotor J, Bogusławski J, Martynkien T, Mergo P, Krajewska A, Przewłoka A, StrupiŃski W and SoboŃ G 2017 Opt. Lett. 42 1592
[10] Luo Z Q, Liu C, Huang Y Z, Wu D D, Wu J Y, Xu H Y, Cai Z P, Lin Z Q, Sun L P and Weng J 2014 IEEE J. Sel. Top. Quantum Electron. 20 0902708
[11] Sotor J, Sobon G, Grodecki K and Abramski K M 2014 Appl. Phys. Lett. 104 251112
[12] Liu H, Zheng X W, Liu M, Zhao N, Luo A P, Luo Z C, Xu W C, Zhang H, Zhao C J and Wen S C 2014 Opt. Express 22 6868
[13] Liu W J, Pang L H, Han H N, Tian W L, Chen H, Lei M, Yan P G and Wei Z Y 2016 Sci. Rep. 6 19997
[14] Sotor J, Sobon G, Macherzynski W, Paletko P and Abramski K M 2015 Appl. Phys. Lett. 107 051108
[15] Hu G H, Albrow-Owen T, Jin X X, Ali A, Hu Y W, Howe R C T, Shehzad K, Yang Z Y, Zhu X K, Woodward R I, Wu T C, Jussila H, Wu J B, Peng P, Tan P H, Sun Z P, Kelleher E J R, Zhang M, Xu Y and Hasan T 2017 Nat. Commun. 8 278
[16] Li J F, Luo H Y, Zhai B, Lu R G, Guo Z N, Zhang H and Liu Y 2016 Sci. Rep. 6 30361
[17] Liu S C, Zhang Y N, Li L, Wang Y G, Lv R D, Wang X, Chen Z D and Wei L L 2018 Appl. Opt. 57 1292
[18] Yun L 2017 Opt. Express 25 32380
[19] Xu Y H, Wang Z T, Guo Z N, Huang H, Xiao Q L and Zhang H 2016 Adv. Opt. Mater. 4 1223
[20] Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y and Zhang H 2018 Laser Photon. Rev. 12 1700229
[21] Li W Y, OuYang Y Y, Ma G L, Liu M L and Liu W J 2018 Laser Phys. 28 055104
[22] Liu W J, Liu M L, Lei M, Fang S B and Wei Z Y 2018 IEEE J. Sel. Top. Quantum Electron. 24 0901005
[23] Yang C Y, Li W Y, Yu W T, Liu M L, Zhang Y J, Ma G L, Lei M and Liu W J 2018 Nonlinear Dyn. 92 203
[24] Zhang M, Howe R C T, Woodward R I, Kelleher E J R, Torrisi F, Hu G H, Popov S V, Taylor J R and Hasan T 2015 Nano Res. 8 1522
[25] Pumera M, Sofer Z and Ambrosi A 2014 J. Mater. Chem. A 2 8981
[26] Yan P G, Liu A J, Chen Y S, Chen H, Ruan S C, Guo C Y, Chen S F, Li I L, Yang H P, Hu J G and Cao G Z 2015 Opt. Mater. Express 5 479
[27] Li W Y, Ma G L, Yu W T, Zhang Y J, Liu M L, Yang C Y and Liu W J 2018 Chin. Phys. B 27 030504
[28] Liu M L, Liu W J, Yan P G, Fang S B, Teng H and Wei Z Y 2018 Chin. Opt. Lett. 16 020007
[29] Yu W T, Yang C Y, Liu M L, Zhang Y J and Liu W J 2018 Optik 159 21
[30] Huang X, Zeng Z Y and Zhang H 2013 Chem. Soc. Rev. 42 1934
[31] Wang J T, Jiang Z K, Chen H, Li J R, Yin J D, Wang J Z, He T C, Yan P G and Ruan S C 2017 Opt. Lett. 42 5010
[32] Liu W J, Pang L H, Han H N, Shen Z W, Lei M, Teng H and Wei Z Y 2016 Photon. Res. 4 111
[33] Zhang M, Hu G H, Hu G Q, Howe R C T, Chen L, Zheng Z and Hasan T 2015 Sci. Rep. 5 17482
[34] Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M and Wei Z Y 2018 Photon. Res. 6 220
[35] Liu M L, Liu W J, Pang L H, Teng H, Fang S B and Wei Z Y 2018 Opt. Commun. 406 72
[36] Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J and Lei M 2017 Phys. Rev. E 96 042201
[37] Mao D, She X Y, Du B B, Yang D X, Zhang W D, Song K, Cui X Q, Jiang B Q, Peng T and Zhao J L 2016 Sci. Rep. 6 23583
[38] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[39] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Castro Neto A H and Novoselov K S 2013 Science 340 1311
[40] Du J, Wang Q K, Jiang G B, Xu C W, Zhao C J, Xiang Y J, Chen Y, Wen S C and Zhang H 2015 Sci. Rep. 4 6346
[41] Zhang H, Lu S B, Zheng J, Du J, Wen S C, Tang D Y and Loh K P 2014 Opt. Express 22 7249
[42] Wang S X, Yu H H, Zhang H J, Wang A Z, Zhao M W, Chen Y X, Mei L M and Wang J Y 2014 Adv. Mater. 26 3538
[43] Chen B H, Zhang X Y, Wu K, Wang H, Wang J and Chen J P 2015 Opt. Express 23 26723
[44] Wang K P, Wang Jun, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L and Blau W J 2013 ACS Nano 7 9260
[45] Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 12823
[46] Aiub E J, Steinberg D, de Souza E A T and Saito L A M 2017 Opt. Express 25 10546
[47] Wu K, Zhang X Y, Wang J, Li X and Chen J P 2015 Opt. Express 23 11453
[48] Koo J, Park J, Lee J, Jhon Y M and Lee J H 2016 Opt. Express 24 10575
[49] Guo B, Yao Y, Yan P G, Xu K, Liu J J, Wang S G and Li Yuan 2016 IEEE Photon. Technol. Lett. 28 323
[50] Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H and Wei Z Y 2017 Opt. Express 25 2950
[51] Yan P G, Chen H, Yin J D, Xu Z H, Li J R, Jiang Z K, Zhang W F, Wang J Z, Li I L, Sun Z and Ruan S C 2017 Nanoscale 9 1871
[52] Zhao L M, Tang D Y, Zhang H, Wu X, Bao Q L and Loh K P 2010 Opt. Lett. 35 3622
[53] Chen H, Chen Y S, Yin J D, Zhang X J, Guo T and Yan P G 2016 Opt. Express 24 16287
[54] Yan P G, Lin R Y, Ruan S C, Liu A J and Chen H 2015 Opt. Express 23 154
[55] Wu K, Chen B H, Zhang X Y, Zhang S F, Guo C S, Li C, Xiao P S, Wang J, Zhou L J, Zou W W and Chen J P 2018 Opt. Commun. 406 214
[56] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
[57] Zhao Y Y, Luo X, Li H, Zhang J, Araujo P T, Gan C K, Wu J, Zhang H, Quek S Y and Dresselhaus M S 2013 Nano Lett. 13 1007
[58] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695
[59] Lou F, Zhao R W, He J L, Jia Z T, Su Xi C, Wang Z W, Hou J and Zhang B T 2015 Photon. Res. 3 A25
[60] Luo Z C, Wang F Z, Liu H, Liu M, Tang R, Luo A P and Xu W C 2016 Opt. Eng. 55 081308
[61] Huang Y Z, Luo Z Q, Li Y Y, Zhong M, Xu B, Che K J, Xu H Y, Cai Z P, Peng J and Weng J 2014 Opt. Express 22 25258
[62] Woodward R I, Kelleher E J R, Howe R C T, Hu G, Torrisi F, Hasan T, Popov S V and Taylor J R 2014 Opt. Express 22 31113
[63] Luo Z Q, Huang Y Z, Zhong M, Li Y Y, Wu J Y, Xu B, Xu H Y, Cai Z P, Peng J and Weng 2014 J. Lightwave Technol. 32 4077
[64] Ren J, Wang S X, Cheng Z C, Yu H H, Zhang H J, Chen Y X, Mei L M and Wang P 2015 Opt. Express 23 5607
[65] Xia H D, Li H P, Lan C Y, Li C, Zhang X X, Zhang S J and Liu Y 2014 Opt. Express 22 17341
[66] Xia H D, Li H P, Lan C Y, Li C, Du J B, Zhang S J and LiuY 2015 Photon. Res. 3 A92
[67] Chen H, Li L, Ruan S C, Guo T and Yan P G 2016 Opt. Eng. 55 081318
[68] Ahmad H, Suthaskumar M, Tiu Z C, Zarei A and Harun S W 2016 Opt. Laser Technol. 79 20
[69] Yu Z H, Song Y R, Tian J R, Dou Z Y, Guoyu H Y, Li K X, Li H W and Zhang X P 2014 Opt. Express 22 11508
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[5] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[6] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[7] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[8] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[9] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[10] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[11] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[12] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[13] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[14] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
[15] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
No Suggested Reading articles found!