Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080503    DOI: 10.1088/1674-1056/27/8/080503
GENERAL Prev   Next  

Phase transitions of the five-state clock model on the square lattice

Yong Chen(陈勇)1, Zhi-Yuan Xie(谢志远)2, Ji-Feng Yu(余继锋)1
1 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  

Using the tensor renormalization group method based on the higher-order singular value decomposition, we have studied the phase transitions of the five-state clock model on the square lattice. The temperature dependence of the specific heat indicates the system has two phase transitions, as verified clearly by the correlation function at three representative temperatures. By calculating the magnetic susceptibility, we obtained only the upper critical temperature as Tc2=0.9565(7). Investigating the fixed-point tensor, we precisely locate the transition temperatures at Tc1=0.9029(1) and Tc2=0.9520(1), consistent well with the Monte Carlo and the density matrix renormalization group results.

Keywords:  five-state clock model      phase transition      tensor renormalization group      HOTRG  
Received:  23 April 2018      Revised:  12 May 2018      Accepted manuscript online: 
PACS:  05.70.Fh (Phase transitions: general studies)  
  05.10.Cc (Renormalization group methods)  
  75.10.Hk (Classical spin models)  
Fund: 

Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 531107040857), the Natural Science Foundation of Hunan Province, China (Grant No. 851204035), and the National Natural Science Foundation of China (Grant No. 11774420).

Corresponding Authors:  Ji-Feng Yu     E-mail:  yujifeng@hnu.edu.cn

Cite this article: 

Yong Chen(陈勇), Zhi-Yuan Xie(谢志远), Ji-Feng Yu(余继锋) Phase transitions of the five-state clock model on the square lattice 2018 Chin. Phys. B 27 080503

[1] Minnhagen P 1987 Rev. Mod. Phys. 59 1001
[2] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
[3] Kosterlitz J M and Thouless D J 1974 J. Phys. C 7 1046
[4] Elitzur S, Pearson R B and Shigemitsu J 1979 Phys. Rev. D 19 3698
[5] Savit R 1980 Rev. Mod. Phys. 52 453
[6] Ortiz G, Cobanera E and Nussinov Z 2012 Nucl. Phys. B 854 780
[7] Einhorn M B, Savit R and Rabinovici E 1980 Nucl. Phys. B 170 16
[8] Cardy J L 1980 J. Phys. A 13 1507
[9] Fröhlich J and Spencer T 1981 Commun. Math. Phys. 81 527
[10] Tobochnik J 1982 Phys. Rev. B 26 6201
[11] Tomita Y and Okabe Y 2002 Phys. Rev. B 65 184405
[12] Rastelli E, Regina S and Tassi A 2004 Phys. Rev. B 69 174407
[13] Lapilli C M, Pfeifer P and Wexler C 2006 Phys. Rev. Lett. 96 140603
[14] Borisenko O, Chelnokov V, Cortese G, Fiore R, Gravina M and Papa A 2012 Phys. Rev. E 85 021114
[15] Borisenko O, Cortese G, Fiore R, Gravina M and Papa A 2011 Phys. Rev. E 83 041120
[16] Kim D H 2017 Phys. Rev. E 96 052130
[17] Baek S K, Minnhagen P and Kim B J 2009 Phys. Rev. E 80 060101
[18] Chen J, Liao H J, Xie H D, Han X J, Huang R Z, Cheng S, Wei Z C, Xie Z Y and Xiang T 2017 Chin. Phys. Lett 34 050503
[19] José J V, Kadanoff L P, Kirkpatrick S and Nelson D R 1977 Phys. Rev. B 16 1217
[20] Chatelain C 2014 J. Stat. Mech. 11 P11022
[21] Kumano Y, Hukushima K, Tomita Y and Oshikawa M 2013 Phys. Rev. B 88 104427
[22] Baek S K, Mäkelä H, Minnhagen P and Kim B J 2013 Phys. Rev. E 88 012125
[23] Levin M and Nave C P 2007 Phys. Rev. Lett. 99 120601
[24] Jiang H C, Weng Z Y and Xiang T 2008 Phys. Rev. Lett. 101 090603
[25] Gu Z C and Wen X G 2009 Phys. Rev. B 80 155131
[26] Xie Z Y, Jiang H C, Chen Q N, Weng Z Y and Xiang T 2009 Phys. Rev. Lett. 103 160601
[27] Zhao H H, Xie Z Y, Chen Q N, Wei Z C, Cai J W and Xiang T 2010 Phys. Rev. B 81 174411
[28] Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang T 2012 Phys. Rev. B 86 045139
[29] Zhao H H, Xie Z Y, Xiang T and Imada M 2016 Phys. Rev. B 93 125115
[30] Yu J F, Xie Z Y, Meurice Y, Liu Y Z, Denbleyker A, Zou H Y, Qin M P, Chen J and Xiang T 2014 Phys. Rev. E 89 013308
[31] Qin M P, Chen J, Chen Q N, Xie Z Y, Kong X, Zhao H H, Normand B and Xiang T 2013 Chin. Phys. Lett. 30 076402
[32] Wang S, Xie Z Y, Chen J, Normand B and Xiang T 2014 Chin. Phys. Lett. 31 070503
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!