Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080504    DOI: 10.1088/1674-1056/27/8/080504
GENERAL Prev   Next  

Transport of velocity alignment particles in random obstacles

Wei-jing Zhu(朱薇静)1, Xiao-qun Huang(黄小群)2, Bao-quan Ai(艾保全)1
1 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China;
2 Basic Teaching Department, Neusoft Institute Guangdong, Foshan 528000, China
Abstract  We numerically investigate the trapping behaviors of aligning particles in two-dimensional (2D) random obstacles system. Under the circumstances of the effective diffusion rate and the average velocity tend to zero, particles are in trapped state. In this paper, we examine how the system parameters affect the trapping behaviors. At the large self-propelled speed, the ability of nematic particles escape from trapping state is enhancing rapidly, in the meanwhile the polar and free particles are still in trapped state. For the small rotation diffusion coefficient, the polar particles circle around (like vortices) the obstacles and here particles are in trapped state. Interestingly, only the partial nematic particles are trapped in the confined direction and additional particles remain flowing. In the free case, the disorder particle-particle collisions impede the motion in each other's directions, leading the free particles to be trapped. At the large rotation diffusion coefficient, the ordered motion of aligning particles disappear, particles fill the sample evenly and are self-trapped around obstacles. As the particles approach the trapping density due to the crowding effect the particles become so dense that they impede each other's motion. With the increasing number of obstacles, the trajectories of particles are blocked by obstacles, which obstruct the movement of particles. It is worth noting that when the number of the obstacles are large enough, once the particles are trapped, the system is permanently absorbed into a trapped state.
Keywords:  Brownian motion      self-propelled particles      stochastic processes  
Received:  20 April 2018      Revised:  04 June 2018      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  45.50.-j (Dynamics and kinematics of a particle and a system of particles)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575064 and 11175067), the PCSIRT (Grant No. IRT1243), the GDUPS (2016), and the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030313426).
Corresponding Authors:  Bao-quan Ai     E-mail:  aibq@scnu.edu.cn

Cite this article: 

Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全) Transport of velocity alignment particles in random obstacles 2018 Chin. Phys. B 27 080504

[1] Paxton W F, Kistler K C, Olmeda C C, Sen A, Angelo S K St, Cao Y, Mallouk T E, Lammert P E and Crespi V H 2004 J. Am. Chem. Soc. 126 41
[2] Bechinger C, Leonardo R D, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[3] Dreyfus R, Baudry J, Roper M L, Fermigier M, Stone M L and Bibette J 2005 Nature 437 862
[4] Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R and Golestanian R 2007 Phys. Rev. Lett. 99 048102
[5] Palacci J, Cottin-Bizonne C, Ybert C and Bocquet L 2010 Phys. Rev. Lett. 105 088304
[6] Jiang H R, Yoshinaga N and Sano M 2010 Phys. Rev. Lett. 105 268302
[7] Buttinoni I, Volpe G, Kümmel F, Volpe G and Bechinger C 2012 J. Phys.: Condens. Matter 24 284129
[8] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Eur. Phys. J. Special Topics 202 1
[9] Zöttl A and Stark H 2012 Phys. Rev. Lett. 108 218104
[10] Cates M 2012 Rep. Prog. Phys. 75 042601
[11] Elgeti J, Winkler R G and Gompper G 2015 Rep. Prog. Phys. 78 056601
[12] Feng Y L, Dong J M and Tang X L 2016 Chin. Phys. Lett. 33 108701
[13] Bhattacharya S and Higgins M J 1993 Phys. Rev. Lett. 70 2617
[14] Koshelev A E and Vinokur V M 1994 Phys. Rev. Lett. 73 3580
[15] Olson C J, Reichhardt C and Nori F 1998 Phys. Rev. Lett. 81 3757
[16] Williams F I B, Wright P A, Clark R G, Andrei E Y, Deville G, Glattli D C, Probst O, Etienne B, Dorin C, Foxon C T and Harris J J 1991 Phys. Rev. Lett. 66 3285
[17] Pertsinidis A and Ling X S 2008 Phys. Rev. Lett. 100 028303
[18] Tierno P 2012 Phys. Rev. Lett. 109 198304
[19] Bohlein T, Mikhael J and Bechinger C 2012 Nat. Mater. 11 126
[20] Reichhardt C and Reichhardt C J O 2012 Phys. Rev. E 85 051401
[21] Mcdermott D, Amelang J, Reichhardt C J O and Reichhardt C 2013 Phys. Rev. E 88 062301
[22] Braun O M, Dauxois T, Paliy M V and Peyrard M 1997 Phys. Rev. Lett. 78 1295
[23] Vanossi A, Manini N, Urbakh M, Zapperi S and Tosatti E 2013 Rev. Mod. Phys. 85 529
[24] Tian W D, Gu Y, Guo Y K and Chen K 2017 Chin. Phys. B 26 100502
[25] Palacci J, Sacanna S, Steinberg A P, Pine D J and Chaikin P M 2013 Science 339 936
[26] Bialké J, Speck T and Löwen H 2012 Phys. Rev. Lett. 108 168301
[27] Henkes S, Fily Y and Marchetti M C 2011 Phys. Rev. E 84 040301
[28] Fily Y and Marchetti M C 2012 Phys. Rev. Lett. 108 235702
[29] Cates M E and Tailleur J 2013 Europhys. Lett. 101 20010
[30] Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C and Bocquet L 2012 Phys. Rev. Lett. 108 268303
[31] Redner G S, Hagan M F and Baskaran A 2013 Phys. Rev. Lett. 110 055701
[32] Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C and Speck T 2013 Phys. Rev. Lett. 110 238301
[33] Stenhammar J, Tiribocchi A, Allen R J, Marenduzzo D and Cates M E 2013 Phys. Rev. Lett. 111 145702
[34] Mognetti B M, Saric A, Angioletti-Uberti S, Cacciuto A, Valeriani C and Frenkel D 2013 Phys. Rev. Lett. 111 245702
[35] Reichhardt C and Reichhardt C J O 2017 Soft Matter 14 4
[36] Reichhardt C and Reichhardt C J O 2017 New J. Phys. 20 2
[37] Reichhardt C and Reichhardt C J O 2014 Phys. Rev. E 90 012701
[38] Nguyen H T, Reichhardt C and Reichhardt C J O 2017 Phys. Rev. E 95 030902
[39] Reichhardt C and Reichhardt C J O 2018 J. Phys. Condens. Matter 30 015404
[40] O'Hern C S, Silbert L E, Liu A J and Nagel S R 2003 Phys. Rev. E 68 011306
[41] Drocco J A, Hastings M B, Reichhardt C J O and Reichhardt C 2005 Phys. Rev. Lett. 95 088001
[42] Reichhardt C and Reichhardt C J O 2014 Soft Matter 10 2932
[43] To K, Lai P -Y and Pak H K 2001 Phys. Rev. Lett. 86 71
[44] Thomas C C and Durian D J 2013 Phys. Rev. E 87 052201
[45] Garcimartín A, Pastor J M, Ferrer L M, Ramos J J, Martín-Gómez C and Zuriguel I 2015 Phys. Rev. E 91 022808
[46] Zuriguel I, Pugnaloni L A, Garcimartín A and Maza D 2003 Phys. Rev. E 68 030301
[47] Morin A, Desreumaux N, Caussin J B and Bartolo D 2017 Nat. Phys. 13 63
[48] Zeitz M, Wolff K and Stark H 2017 Eur. Phys. J. E 40 23
[49] Reichhardt C and Reichhardt C J O 2015 Phys. Rev. E 91 032313
[50] Mertens S and Moore C 2012 Phys. Rev. E 86 061109
[51] Chepizhko O and Peruani F 2013 Phys. Rev. Lett. 111 160604
[52] Reichhardt C and Reichhardt C J O 2014 Soft Matter 10 7502
[53] Baskaran A and Marchetti M C 2012 Eur. Phys. J. E 35 95
[54] Cavagna A, Castello L D, Giardina I, Grigera T, Jelic A, Melillo S, Mora T, Parisi L, Silvestri E, Viale M and Walczak A M 2015 J. Stat. Phys. 158 601
[55] Baskaran A and Marchetti M C 2008 Phys. Rev. Lett. 101 268101
[56] Baskaran A and Marchetti M C 2009 Proc. Natl. Acad. Sci. USA 106 15567
[57] Vicsek T, Czirok A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[58] Ngo S, Ginelli F and Chaté H 2012 Phys. Rev. E 86 050101
[59] Nagai K H, Sumino Y, Montagne R, Aranson I S and Chaté H 2015 Phys. Rev. Lett. 114 168001
[60] Ginelli F, Peruani F, Bär M and Chaté H 2010 Phys. Rev. Lett. 104 184502
[61] Zhu W J, Li F G and Ai B Q 2017 Eur. Phys. J. E 40 59
[62] Ai B Q, Zhu W J, He Y F and Zhong W R 2017 J. Stat. Mech. 2017 023501
[63] Mijalkov M and Volpe G 2013 Soft Matter 9 6376
[64] Peruani F and Bär M 2013 New J. Phys. 15 065009
[65] Peruani F, Ginelli F, Bär M and Chaté H 2011 J. Phys.: Conf. Ser. 297 012014
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[3] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[4] Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives
Hossam A. Ghany, Abd-Allah Hyder, M Zakarya. Chin. Phys. B, 2020, 29(3): 030203.
[5] Current transport and mass separation for an asymmetric fluctuation system with correlated noises
Jie Wang(王杰), Li-Juan Ning(宁丽娟). Chin. Phys. B, 2018, 27(1): 010501.
[6] Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel
Nur Izzati Ishak, S V Muniandy, Vengadesh Periasamy, Fong-Lee Ng, Siew-Moi Phang. Chin. Phys. B, 2017, 26(8): 088203.
[7] An image encryption scheme based on three-dimensional Brownian motion and chaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Ke Yuan(袁科), Yang Lu(路杨), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2017, 26(2): 020504.
[8] Anomalous boundary deformation induced by enclosed active particles
Wen-De Tian(田文得), Yan Gu(顾燕), Yong-Kun Guo(郭永坤), Kang Chen(陈康). Chin. Phys. B, 2017, 26(10): 100502.
[9] Current and efficiency optimization under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydiner. Chin. Phys. B, 2016, 25(9): 090501.
[10] Current and efficiency of Brownian particles under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydıner. Chin. Phys. B, 2015, 24(4): 040501.
[11] Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
Wang Zhi-Gang (王志刚), Gao Rui-Mei (高瑞梅), Fan Xiao-Ming (樊晓明), Han Qi-Xing (韩七星). Chin. Phys. B, 2014, 23(9): 090201.
[12] Subcooled pool boiling heat transfer in fractal nanofluids:A novel analytical model
Xiao Bo-Qi (肖波齐), Yang Yi (杨毅), Xu Xiao-Fu (许晓赋). Chin. Phys. B, 2014, 23(2): 026601.
[13] Coupling effect of Brownian motion and laminar shear flow on colloid coagulation:a Brownian dynamics simulation study
Xu Sheng-Hua(徐升华), Sun Zhi-Wei(孙祉伟), Li Xu(李旭), and Jin Tong Wang . Chin. Phys. B, 2012, 21(5): 054702.
[14] Random-phase-induced chaos in power systems
Qin Ying-Hua(覃英华), Luo Xiao-Shu(罗晓曙), and Wei Du-Qu(韦笃取). Chin. Phys. B, 2010, 19(5): 050511.
[15] Impulsive synchronization and control of directed transport in chaotic ratchets
Guo Liu-Xiao(过榴晓), Hu Man-Feng(胡满峰), and Xu Zhen-Yuan(徐振源). Chin. Phys. B, 2010, 19(2): 020512.
No Suggested Reading articles found!