Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 064301    DOI: 10.1088/1674-1056/27/6/064301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Propagation of acoustic waves in a fluid-filled pipe with periodic elastic Helmholtz resonators

Dian-Long Yu(郁殿龙)1, Hui-Jie Shen(沈惠杰)2, Jiang-Wei Liu(刘江伟)1, Jian-Fei Yin(尹剑飞)1,2, Zhen-Fang Zhang(张振方)1, Ji-Hong Wen(温激鸿)1
1 Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China;
2 College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract  Helmholtz resonators are widely used to reduce noise in a fluid-filled pipe system. It is a challenge to obtain low-frequency and broadband attenuation with a small sized cavity. In this paper, the propagation of acoustic waves in a fluid-filled pipe system with periodic elastic Helmholtz resonators is studied theoretically. The resonance frequency and sound transmission loss of one unit are analyzed to validate the correctness of simplified acoustic impedance. The band structure of infinite periodic cells and sound transmission loss of finite periodic cells are calculated by the transfer matrix method and finite element software. The effects of several parameters on band gap and sound transmission loss are probed. Further, the negative bulk modulus of periodic cells with elastic Helmholtz resonators is analyzed. Numerical results show that the acoustic propagation properties in the periodic pipe, such as low frequency, broadband sound transmission, can be improved.
Keywords:  acoustic metamaterial      band gap      sound transmission loss      elastic Helmholtz resonator      noise control  
Received:  01 January 2018      Revised:  27 March 2018      Accepted manuscript online: 
PACS:  43.40.+s (Structural acoustics and vibration)  
  47.35.Lf (Wave-structure interactions)  
  62.60.+v (Acoustical properties of liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11372346,51405502,and 51705529).
Corresponding Authors:  Dian-Long Yu     E-mail:  dianlongyu@vip.sina.com

Cite this article: 

Dian-Long Yu(郁殿龙), Hui-Jie Shen(沈惠杰), Jiang-Wei Liu(刘江伟), Jian-Fei Yin(尹剑飞), Zhen-Fang Zhang(张振方), Ji-Hong Wen(温激鸿) Propagation of acoustic waves in a fluid-filled pipe with periodic elastic Helmholtz resonators 2018 Chin. Phys. B 27 064301

[1] Yu D L, Wen J H, Zhao H G, Liu Y Z and Wen X S 2008 J. Sound Vib. 318 193
[2] Li Y F, Shen H J, Zhang L K, Su Y S and Yu D L 2016 Phys. Lett. A 380 2322
[3] Xuan L K, Liu Y, Gong J F, Ming P J and Ruan Z Q 2017 Adv. Mech. Eng. 9 1
[4] Munjal M L 2014 Acoustics of Ducts and Mufflers (West Sussex:John Wiley & Sons Ltd.)
[5] Seo S H and Kim Y H 2005 J. Acoust. Soc. Am. 118 2332
[6] Photiadis D M 1991 J. Acoust. Soc. Am. 90 1188
[7] Norris A N and Wickham G 1993 J. Acoust. Soc. Am. 93 617
[8] Wang Z F, Hu Y M, Xiong S D, Luo H, Meng Z and Ni M 2009 Acta Phys. Sin. 58 2507 (in Chinese)
[9] Sang Y J, Lan Y and Ding YW 2016 Acta Phys. Sin. 65 024301 (in Chinese)
[10] Zhou C G, Liu B L, Li X D and Tian J 2007 Acta Acustica 32 426
[11] Cummer S A, Christensen J and Alú A 2016 Nat. Rev. Mater. 1 16001
[12] Hussein M I, Leamy M J and Ruzzene M 2014 ASME Appl. Mech. Rev. 66 040802
[13] Fang X, Wen J H, Bonello B, Yin J F and Yu D L 2017 Nat. Commun. 8 1288
[14] Wei Z D, Li B R, Du J M and Yang G. 2016 Chin. Phys. Lett. 33 044303
[15] Yang Z, Mei J, Yang M, Chan N H and Sheng P 2008 Physics 101 204301
[16] Cai L, Wen J H, Yu D L, Lu Z M and Wen X S 2014 Chin. Phys. Lett. 31 094303
[17] Zhao H G, Liu Y Z, Wen J H, Yu D L, Wang G and Wen X S 2006 Chin. Phys. Lett. 23 2132
[18] Sun H W, Lin G C, Du X W and Pai P F 2012 Acta Phys. Sin. 61 154302 (in Chinese)
[19] Amireddy K K, Amaniam K B and Rajagopal P 2017 Sci. Rep. 7 7777
[20] Cheer J, Daley S and McCormick C 2017 Smart Mater. Struct. 26 025032
[21] Xia B Z, Qin Y, Chen N, Yu D J and Jiang C 2017 Sci. China-Tech. Sci. 60 385
[22] Farooqui M, Elnady T and Akl W 2016 J. Acoust. Soc. Am. 139 3277
[23] Ji Z L 2015 Acoustic theory and design of muffler (Beijing:Science Press)
[24] Zhang H, Xiao Y, Wen J H, Yu D L and Wen X S 2016 Appl. Phys. Lett. 108 141902
[25] Yu D L, Du C Y, Shen H J, Liu J W and Wen J H 2017 Chin. Phys. Lett. 34 076202
[26] Lee S H and Wright O B 2016 Phys. Rev. B 93 24302
[27] Cheng Y, Xu J Y and Liu X J 2008 Phys. Rev. B 77 045134
[28] Li Y F, Lan J, Li B S, Liu X Z and Zhang J S 2016 J. Appl. Phys. 120 145105
[1] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[2] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[3] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[4] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[5] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[6] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[7] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[8] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[9] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[10] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[11] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[12] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[13] Accurate GW0 band gaps and their phonon-induced renormalization in solids
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2021, 30(11): 117101.
[14] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[15] Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(8): 083301.
No Suggested Reading articles found!