CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Controlling flexural waves in thin plates by using transformation acoustic metamaterials |
Xing Chen(陈幸)1,2, Li Cai(蔡力)1,2, Ji-Hong Wen(温激鸿)1,2 |
1 Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China; 2 College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract In this study, we design periodic grille structures on a single homogenous thin plate to achieve anisotropic acoustic metamaterials that can control flexural waves. The metamaterials can achieve the bending control of flexural waves in a thin plate at will by designing only one dimension in the thickness direction, which makes it easier to use this metamaterial to design transformation acoustic devices. The numerical simulation results show that the metamaterials can accurately control the bending waves over a wide frequency range. The experimental results verify the validity of the theoretical analysis. This research provides a more practical theoretical method of controlling flexural waves in thin-plate structures.
|
Received: 11 October 2017
Revised: 06 March 2018
Accepted manuscript online:
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
46.70.De
|
(Beams, plates, and shells)
|
|
62.30.+d
|
(Mechanical and elastic waves; vibrations)
|
|
Corresponding Authors:
Li Cai, Ji-Hong Wen
E-mail: cailiyunnan@163.com;wenjihong_nudt1@vip.sina.com
|
Cite this article:
Xing Chen(陈幸), Li Cai(蔡力), Ji-Hong Wen(温激鸿) Controlling flexural waves in thin plates by using transformation acoustic metamaterials 2018 Chin. Phys. B 27 057803
|
[1] |
Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T and Sheng P 2000 Science 289 1734
|
[2] |
Li J and Chan C T 2004 Phys. Rev. E 70 055602
|
[3] |
Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nat. Mater. 5 452
|
[4] |
Qian J, Xia J P, Sun H X, Yuan S Q, Ge Y and Yu X Z 2017 J. Appl. Phys. 122 244501
|
[5] |
Lu W J, Jia H, Bi Y F, Yang Y Z and Yang J 2017 J. Acoust. Soc. Am. 142 84
|
[6] |
Xia J P, Sun H X and Yuan S Q 2017 Sci. Rep. 7 8151
|
[7] |
Wang Y Y, Ding E L, Liu X Z and Gong X F 2016 Chin. Phys. B 12 124305
|
[8] |
Yang Y Z, Jia H, Lu W J, Sun Z Y and Yang J 2017 J. Appl. Phys. 122 054502
|
[9] |
Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
|
[10] |
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
|
[11] |
Zhang B L, Luo Y, Liu X G and Barbastathis G 2011 Phys. Rev. Lett. 106 033901
|
[12] |
Cummer S A and Schurig D 2007 New J. Phys. 9 45
|
[13] |
Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J, Rahm M and Starr A 2008 Phys. Rev. Lett. 100 024301
|
[14] |
Rahm M, Roberts D A, Pendry J B and Smith D R 2008 Opt. Express 16 11555
|
[15] |
Christensen J and De Abajo F J G 2010 Appl. Phys. Lett. 97 164103
|
[16] |
Jia H, Ke M Z, Hao R, Ye Y T, Liu F and Liu Z Y 2010 Appl. Phys. Lett. 97 173507
|
[17] |
Milton G W, Briane M and Willis J R 2006 New J. Phys. 8 248
|
[18] |
Farhat M, Guenneau S and Enoch S 2009 Phys. Rev. Lett. 103 024301
|
[19] |
Farhat M, Guenneau S, Enoch S and Movchan A B 2009 Phys. Rev. B 79 033102
|
[20] |
Schoenberg M and Sen P N 1983 J. Acoust. Soc. Am. 73 61
|
[21] |
Nicolas S, Manfred W and Martin W 2012 Phys. Rev. Lett. 108 014301
|
[22] |
Torrent D and Sánchez-Dehesa J 2008 New J. Phys. 10 063015
|
[23] |
Chen H Y and Chan C T 2007 Appl. Phys. Lett. 91 183518
|
[24] |
Graff K F 1992 Wave Motion in Elastic Solids (Shanghai:Tongji University Press) pp. 247-252
|
[25] |
Pao Y H and Mow C C 1993 Diffraction of Elastic Waves and Dynamic Stress Concentrations (Beijing:Science Press) pp. 52-55
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|