CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Compression behavior and phase transition of β-Si3N4 under high pressure |
Hong-xia Gong(龚红霞)1, Zi-li Kou(寇自力)1, Cong Fan(樊聪)1, Hao Liang(梁浩)1, Qi-ming Wang(王齐明)1, Lei-lei Zhang(张雷雷)1, Fang Peng(彭放)1, Ming Yang(杨鸣)1, Xiao-lin Ni(倪小林)1, Jing Liu(刘景)2 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The compressibility and pressure-induced phase transition of β-Si3N4 were investigated by using an angle dispersive x-ray diffraction technique in a diamond anvil cell at room temperature. Rietveld refinements of the x-ray powder diffraction data verified that the hexagonal structure (with space group P63/m, Z=2 formulas per unit cell) β-Si3N4 remained stable under high pressure up to 37 GPa. Upon increasing pressure, β-Si3N4 transformed to δ-Si3N4 at about 41 GPa. The initial β-Si3N4 was recovered as the pressure was released to ambient pressure, implying that the observed pressure-induced phase transformation was reversible. The pressure-volume data of β-Si3N4 was fitted by the third-order Birch-Murnaghan equation of state, which yielded a bulk modulus K0=273(2) GPa with its pressure derivative K'0=4 (fixed) and K0=278(2) GPa with K'0=5. Furthermore, the compressibility of the unit cell axes (a and c-axes) for the β-Si3N4 demonstrated an anisotropic property with increasing pressure.
|
Received: 25 November 2017
Revised: 02 February 2018
Accepted manuscript online:
|
PACS:
|
61.05.cp
|
(X-ray diffraction)
|
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
81.05.Je
|
(Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))
|
|
64.70.K-
|
|
|
Corresponding Authors:
Zi-li Kou
E-mail: kouzili@scu.edu.cn
|
Cite this article:
Hong-xia Gong(龚红霞), Zi-li Kou(寇自力), Cong Fan(樊聪), Hao Liang(梁浩), Qi-ming Wang(王齐明), Lei-lei Zhang(张雷雷), Fang Peng(彭放), Ming Yang(杨鸣), Xiao-lin Ni(倪小林), Jing Liu(刘景) Compression behavior and phase transition of β-Si3N4 under high pressure 2018 Chin. Phys. B 27 056101
|
[10] |
Wang W, He D, Tang M, Li F, Liu L and Bi Y 2012 Diamond Relat. Mater. 27 49
|
[1] |
Clarke D R, Lange F F and Schnittgrund G D 1982 J. Am. Ceram. Soc. 65 c51
|
[11] |
Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueş H, Kroll P and Boehler R 1999 Nature 400 340
|
[2] |
He H, Sekine T, Kobayashi T, Hirosaki H and Suzuki I 2000 Phys. Rev. B 62 11412
|
[12] |
Nishiyama N, Ishikawa R, Ohfuji H, Marquardt H, Kurnosov A, Taniguchi T, Kim B N, Yoshida H, Masuno A and Bednarcik J 2017 Sci. Rep. 7 44755
|
[3] |
Jack K H 1976 J. Mater. Sci. 11 1135
|
[13] |
Tanaka I, Oba F, Sekine T, Ito E, Kubo A, Tatsumi K, Adachi H and Yamamoto T 2002 J. Mater. Res. 17 731
|
[4] |
Zhang C, Shun J X, Tian R G and Zhou S Y 2007 Acta Phys. Sin. 56 5969(in Chinese)
|
[14] |
Zerr A, Kempf, Schwarz M, Kroke E, Göken M and Riedel R 2002 J. Am. Ceram. Soc. 85 86
|
[5] |
Jiang J Z, Lindelov H, Gerward L, Ståhl K, Recio J M, Morisanchez P, Carlson S, Mezouar M, Dooryhee E and Fitch A 2002 Phys. Rev. B 65 161202
|
[15] |
Zerr A 2001 Phys. Status Solidi B 227 R4
|
[6] |
Jiang J Z, Ståhl K, Berg R W, Frost D J, Zhou T J and Shi P X 2000 Europhys. Lett. 51 62
|
[16] |
Kroll P and Appen J V 2001 Phys. Status Solidi B 226 R6
|
[7] |
Paszkowicz W, Minikayev R, Piszora P, Knapp M, Bähtz C, Recio J M, Marqués M, Morisánchez P, Gerward L and Jiang J Z 2004 Phys. Rev. B 69 052103
|
[17] |
Xu B, Dong J, Mcmillan P F, Shebanova O and Salamat A 2011 Phys. Rev. B 84 014113
|
[8] |
Soignard E, Somayazulu M, Dong J, Sankey O F and Mcmillan P F 2001 J. Phys.:Condens. Matter 13 557
|
[18] |
Kuwabara A, Matsunaga K and Tanaka I 2008 Phys. Rev. B 78 064104
|
[9] |
Togo A and Kroll P 2008 J. Comput. Chem. 29 2255
|
[19] |
Ogata S, Hirosaki N, Kocer C and Shibutani Y 2004 Acta Mater. 52 233
|
[10] |
Wang W, He D, Tang M, Li F, Liu L and Bi Y 2012 Diamond Relat. Mater. 27 49
|
[20] |
Li Y M, Kruger M B and Nguyen J H 1997 Solid State Commun. 103 107
|
[11] |
Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueş H, Kroll P and Boehler R 1999 Nature 400 340
|
[21] |
Cartz L and Jorgensen J D 1981 J. Appl. Phys. 52 236
|
[12] |
Nishiyama N, Ishikawa R, Ohfuji H, Marquardt H, Kurnosov A, Taniguchi T, Kim B N, Yoshida H, Masuno A and Bednarcik J 2017 Sci. Rep. 7 44755
|
[22] |
Liang H, Peng F, Fan C, Zhang Q, Liu J and Guan S X 2017 Chin. Phys. B 26 053101
|
[13] |
Tanaka I, Oba F, Sekine T, Ito E, Kubo A, Tatsumi K, Adachi H and Yamamoto T 2002 J. Mater. Res. 17 731
|
[23] |
Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
|
[14] |
Zerr A, Kempf, Schwarz M, Kroke E, Göken M and Riedel R 2002 J. Am. Ceram. Soc. 85 86
|
[24] |
Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
|
[15] |
Zerr A 2001 Phys. Status Solidi B 227 R4
|
[25] |
Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Pressure Res. 14 14
|
[16] |
Kroll P and Appen J V 2001 Phys. Status Solidi B 226 R6
|
[26] |
Yang S W, Peng F, Li W T, Hu Q W, Yan X Z, Lei L, Li X D and He D W 2016 Chin. Phys. B 25 076101
|
[17] |
Xu B, Dong J, Mcmillan P F, Shebanova O and Salamat A 2011 Phys. Rev. B 84 014113
|
[27] |
Larson A C and Dreele R B V 1994 Los Alamos National Laboratory Report No LAUR 86
|
[18] |
Kuwabara A, Matsunaga K and Tanaka I 2008 Phys. Rev. B 78 064104
|
[28] |
Rietveld H M 1969 J. Appl. Cryst. 2 65
|
[19] |
Ogata S, Hirosaki N, Kocer C and Shibutani Y 2004 Acta Mater. 52 233
|
[29] |
Toby B H 2001 J. Appl. Cryst. 34 210
|
[20] |
Li Y M, Kruger M B and Nguyen J H 1997 Solid State Commun. 103 107
|
[30] |
Qian Z, Xiang W and Shan Q 2017 Chin. Phys. B 26 090703
|
[21] |
Cartz L and Jorgensen J D 1981 J. Appl. Phys. 52 236
|
[31] |
Birch F 1978 J. Geophys. Res. 83 1257
|
[22] |
Liang H, Peng F, Fan C, Zhang Q, Liu J and Guan S X 2017 Chin. Phys. B 26 053101
|
[32] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
|
[23] |
Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
|
[33] |
Angel R J, Bujak M, Zhao J, Gatta G D and Jacobsen S D 2007 J. Appl.Cryst. 40 26
|
[24] |
Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
|
[34] |
Hou H J, Zhu H J, Lao C W, Li S P, Guan H and Xie L H 2016 Braz. J. Phys. 46 393
|
[25] |
Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Pressure Res. 14 14
|
[35] |
Zhang R F, Sheng S H and Veprek S 2007 Appl. Phys. Lett. 90 191903
|
[26] |
Yang S W, Peng F, Li W T, Hu Q W, Yan X Z, Lei L, Li X D and He D W 2016 Chin. Phys. B 25 076101
|
[27] |
Larson A C and Dreele R B V 1994 Los Alamos National Laboratory Report No LAUR 86
|
[28] |
Rietveld H M 1969 J. Appl. Cryst. 2 65
|
[29] |
Toby B H 2001 J. Appl. Cryst. 34 210
|
[30] |
Qian Z, Xiang W and Shan Q 2017 Chin. Phys. B 26 090703
|
[31] |
Birch F 1978 J. Geophys. Res. 83 1257
|
[32] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
|
[33] |
Angel R J, Bujak M, Zhao J, Gatta G D and Jacobsen S D 2007 J. Appl.Cryst. 40 26
|
[34] |
Hou H J, Zhu H J, Lao C W, Li S P, Guan H and Xie L H 2016 Braz. J. Phys. 46 393
|
[35] |
Zhang R F, Sheng S H and Veprek S 2007 Appl. Phys. Lett. 90 191903
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|