Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 048102    DOI: 10.1088/1674-1056/27/4/048102
Special Issue: TOPICAL REVIEW — Recent advances in thermoelectric materials and devices
TOPIC REVIEW—Recent advances in thermoelectric materials and devices Prev   Next  

Recent advances in non-Pb-based group-IV chalcogenides for environmentally-friendly thermoelectric materials

Bing-Sheng Du(杜炳生)1, Ji-Kang Jian(简基康)1, Hai-Tao Liu(刘海涛)1,2, Jiao Liu(刘骄)1, Lei Qiu(邱磊)1
1. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
2. School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
Abstract  

Pb-based group-IV chalcogenides including PbTe and PbSe have been extensively studied as high performance thermoelectric materials during the past few decades. However, the toxicity of Pb inhibits their applications in vast fields due to the serious harm to the environment. Recently the Pb-free group-IV chalcogenides have become an extensive research subject as promising thermoelectric materials because of their unique thermal and electronic transport properties as well as the enviromentally friendly advantage. This paper briefly summarizes the recent research advances in Sn-, Ge-, and Si-chalcogenides thermoelectrics, showing the unexceptionally high thermoelectric performance in SnSe single crystal, and the significant improvement in thermoelectric performance for those polycrystalline materials by successfully modulating the electronic and thermal transport through using some well-developed strategies including band engineering, nanostructuring and defect engineering. In addition, some important issues for future device applications, including N-type doping and mechanical and chemical stabilities of the new thermoelectrics, are also discussed.

Keywords:  non-Pb      thermoelectric      group-IV chalcogenides  
Received:  19 December 2017      Revised:  24 January 2018      Accepted manuscript online: 
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  28.41.Ak (Theory, design, and computerized simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51472052 and U1601213).

Corresponding Authors:  Ji-Kang Jian     E-mail:  jianjikang@126.com

Cite this article: 

Bing-Sheng Du(杜炳生), Ji-Kang Jian(简基康), Hai-Tao Liu(刘海涛), Jiao Liu(刘骄), Lei Qiu(邱磊) Recent advances in non-Pb-based group-IV chalcogenides for environmentally-friendly thermoelectric materials 2018 Chin. Phys. B 27 048102

[1] Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energy & Environmental Science 2 466
[2] Pan L, Bérardan D, Zhao L D, Barreteau C and Dragoe N 2013 Appl. Phys. Lett. 102 023902
[3] Pei Y L, Tan G J, Feng D, Zheng L, Tan Q, Xie X B, Gong S K, Chen Y, Li J F, He J Q, KanatzidisMG and Zhao L D 2017 Adv. Energy Mater. 7 1601450
[4] Qin P, Qian X, Ge Z H, Zheng L, Feng J, Zhao L D 2017 Inorg. Chem. Front. 4 1192
[5] Zhao H Z, Cao B L, Li S M, Liu N, Shen J W, Li S, Jian J K, Gu L, Pei Y Z, Snyder G J, Ren Z F and Chen X L 2017 Adv. Energy Mater. 7 1700446
[6] Kim Y J, Zhao L D, Kanatzidis M G and Seidman D N 2017 ACS Appl. Mater. Interfaces 9 21791
[7] Jian Z Z, Chen Z W, Li W, Yang J, Zhang W Q and Pei Y Z 2015 J. Mater. Chem. C 3 12410
[8] Li S K, Liu X R, Liu Y D, Liu F S, Luo J and Pan F 2017 Nano Energy 39 297
[9] Tan Q, Wu C F, Sun W and Li J F 2016 RSC Adv. 6 43985
[10] Cao B L, Jian J K, Ge B H, Li S M, Wang H, Liu J and Zhao H Z 2017 Chin. Phys. B 26 017202
[11] Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y and Shi J 2017 Nature 549 247
[12] Wang S Y, Sun Y X, Yang J, Duan B, Wu L H, Zhang W Q and Yang J H 2016 Energy Environ. Sci.9 3436
[13] Ge Z H, Song D, Chong X, Zheng F, Jin L, Qian X, Zheng L, Dunin-Borkowski R E, Qin P, Feng J and Zhao L D 2017 J. Am. Chem. Soc. 139 9714
[14] Mao J, Zhou J W, Zhu H T, Liu Z H, Zhang H, He R, Chen G and Ren Z F 2017 Chem. Mater. 29 867
[15] Hong M, Chasapis T C, Chen Z G, Yang L, Kanatzidis M G, Snyder G J and Zou J 2016 ACS Nano 10 4719
[16] Yamini S A, Mitchell David R G, Gibbs Zachary M, Santos R, Patterson V, Li S, Pei Y Z, Dou S X and Jeffrey Snyder G 2015 Adv. Energy Mater. 5 1501047
[17] Li W, Wu Y X, Lin S Q, Chen Z W, Li J, Zhang X Y, Zheng L L and Pei Y Z 2017 ACS Energy Lett. 2 2349
[18] Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, Huang M, Snyder G J and Pei Y Z 2017 Adv. Mater. 29 1606768
[19] Zhao L D, Lo S, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[20] Ding G, Gao G and Yao K. 2015 Sci. Rep. 5 9567
[21] Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y and Pei Y Z 2017 Adv. Mater. 29 1605887
[22] Li J Q, Deng J F, Li S K, Li Y, Liu F S and Ao W Q 2015 Intermetallics 56 63
[23] Wang H, Schechtel E, Pei Y Z, Snyder G and Jeffrey 2013 Adv. Energy Mater. 3 488
[24] Guo R Q, Wang X J, Kuang Y D and Huang B L 2015 Phys. Rev. B 92 115202
[25] Perumal S, Roychowdhury S, Negi D S, Datta R J and Biswas K 2015 Chem. Mater. 27 7171
[26] Hao S Q, Shi F Y, Dravid V P, Kanatzidis M G and Wolverton C 2016 Chem. Mater. 28 3218
[27] Yang J H, Yuan Q H, Deng H X, Wei S H and Yakobson B I. 2017 The J. Phys. Chem. C 121 123
[28] Juneja R, Pandey T and Singh A K 2017 Chem. Mater. 29 3723
[29] Shafique A and Shin Y H 2017 Sci. Rep. 7 506
[30] Brebrick R F and Strauss A J 1963 Phys. Rev. 131 104
[31] Zhao L D, Chang C, Tan G J and Kanatzidis M G 2016 Energy & Environ. Sci. 9 3044
[32] Cao J, Wang Z, Zhan X, Wang Q, Safdar M, Wang Y and He J 2014 Nanotechnology 25 105705
[33] Biljana P and Atanas T 2008 J. Phys. Chem. C 112 3535
[34] Matthew A F, Cody W S, Mark E T and Richard L B 2010 J. Am. Chem. Soc. 132 4060
[35] Liu J, Jian J K, Yu Z Q, Zhang Z H, Cao B L and Du B S 2017 Crystal Growth & Design 17 6163
[36] Butt Faheem K, Mirza M, Cao C B, Idrees F, Tahir M, Safdar M, Ali Z, Tanveer M and Aslam I 2014 CrystEngComm 16 3470
[37] Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141
[38] Peng K L, Lu X, Zhan H, Hui S, Tang X D, Wang G W, Dai J Y, Uher C, Wang G Y and Zhou X Y 2016 Energy & Environ. Sci. 9 454
[39] Sassi S, Candolfi C, Vaney J B, Ohorodniichuk V, Masschelein P, Dauscher A and Lenoir B 2014 Appl. Phys. Lett. 104 212105
[40] Feng D, Ge Z H, Chen Y X, Li J and He J Q 2017 Nanotechnology 28 455707
[41] Guo J, Jian J K, Liu J, Cao B L, Lei R B, Zhang Z H, Song B and Zhao H Z 2017 Nano Energy 38 569
[42] Tang G D, Wei W, Zhang J, Li Y S, Wang X, Xu G Z, Chang C, Wang Z H, Du Y W and Zhao L D 2016 J. Am. Chem. Soc. 138 1647
[43] Lee Y K, Ahn K, Cha J, Zhou C, Kim H S, Choi G, Chae S I, Park J H, Cho S P, Park S H, Sung Y E, Lee W B, Hyeon T and Chung I 2017 J. Am. Chem. Soc. 139 10887
[44] Guo H F, Xin H X, Qin X Y, Zhang J, Li D, Li Y Y, Song C J and Li C 2016 J. Alloys Compd. 689 87
[45] Wei T R, Tan G, Zhang X, Wu C F, Li J F, Dravid V P, Snyder G J and Kanatzidis M G 2016 J. Am. Chem. Soc. 138 8875
[46] Han Y M, Zhao J, Zhou M, Jiang X X, Leng H Q and Li L F 2015 J. Mater. Chem. A 3 4555
[47] Asfandiyar, Wei T R, Li Z, Sun F, Pan Y, Wu C F, Farooq M U, Tang H, Li F, Li B and Li J F 2017 Sci. Rep. 7 43262
[48] Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B and Kanatzidis Mercouri G. 2014 J. Mater. Chem. A 2 17302
[49] Wang H C, Hwang J, Zhang C, Wang T, Su W B, Kim H, Kim J, Zhai J Z, Wang X, Park H J, Kim W and Wang C 2017 J. Mater. Chem. A 5 14165
[50] Zhang X, Wang D Y, Wu H J, Yin M J, Pei Y L, Gong S K, Huang Li, Pennycook S J, He J Q and Zhao L D 2017 Energy & Environ. Sci. 10 2420
[51] Zhang X, Zhou Y M, Pei Y L, Chen Y X, Yuan B F, Zhang S M, Deng Y, Gong S K, He J Q and Zhao L D 2017 J. Alloys Compd. 709 575
[52] Cook B A, Kramer M J, Wei X, Harringa J L and Levin E M 2007 J. Appl. Phys. 101 053715
[53] Perumal S, Roychowdhury S and Biswas K 2016 J. Mater. Chem. C 4 7520
[54] Manisha S, Subhajit R, Jay G, Suresh P and Kanishka B 2017 Chem. Eur. J. 23 7438
[55] Samanta M and Biswas K 2017 J. Am. Chem. Soc. 139 9382
[56] Wu L H, Li X, Wang S Y, Zhang T S, Yang J, Zhang W Q, Chen L D and Yang J H 2017 NPG Asia Mater. 9 e343
[57] Li J, Chen Z W, Zhang X Y, Sun Y X, Yang J and Pei Y Z 2017 NPG Asia Mater. 9 e353
[58] Ros F D, Dismukes J P and Hockings E F 1960 Electrical Engineering 79 450
[59] Chen Y, Jaworski C M, Gao Y B, Wang H, Zhu T J, Snyder G J, Heremans J P and Zhao X B 2014 New J. Phys. 16 013057
[60] Huang Z, Miller S A, Ge B, Yan M, Anand S, Wu T, Nan P, Zhu Y, ZhuangW, Snyder G J, Jiang P and Bao X 2017 Angew Chem. Int. Ed. Engl. 56 14113
[61] Zhang X Y, Shen J W, Lin S Q, Li J, Chen Z W, Li W and Pei Y Z 2016 J. Materiomics 2 331
[62] Keuleyan S, Wang M, Chung F R, Commons J and Koski K J 2015 Nano Lett. 15 2285
[63] Duong A T, Nguyen V Q, Duvjir G, Duong V T, Kwon S, Song J Y, Lee J K, Lee J E, Park S, Min T, Lee J, Kim J and Cho S 2016 Nat. Commun. 7 13713
[64] Hughes M A, Fedorenko Y, Gholipour B, Yao J, Lee T H, Gwilliam R M, Homewood K P, Hinder S, Hewak D W, Elliott S R and Curry R J 2014 Nat. Commun. 5 5346
[65] Shimano S, Tokura Y and Taguchi Y 2017 APL Mater. 5 056103
[66] Li F, Wang W T, Qiu X C, Zheng Z H, Fan P, Luo J T and Li B 2017 Inorg. Chem. Front. 4 1721
[67] Haldolaarachchige N, Gibson Q, Xie W W, Nielsen M B, Kushwaha S and Cava R J 2016 Phys. Rev. B 93 024520
[68] Li D B, Tan X J, Xu J T, Liu G Q, Jin M, Shao H Z, Huang H J, Zhang J F and Jiang J 2017 RSC Adv. 7 17906
[69] Wang X, Xu J, Liu G Q, Fu Y J, Liu Z, Tan X J, Shao H Z, Jiang H C, Tan T Y and Jiang J 2016 Appl. Phys. Lett. 108 083902
[70] Pei Y Z, Gibbs Z M, Gloskovskii A, Balke B, Zeier W G and Snyder G Jeffrey 2014 Adv. Energy Mater. 4 1400486
[71] Kutorasinski K, Wiendlocha B, Kaprzyk S and Tobola J 2015 Phys. Rev. B 91 205201
[72] Nassary M M 2009 Turk. J. Phys. 33 201
[73] Yang J M, Zhang J B, Yang G, Wang C and Wang Y X 2015 J. Alloys Compd. 644 615
[74] Erdemir A 1994 Tribology Transactions 37 471
[75] Zallen R and Slade M 1974 Phys. Rev. B 9 1627
[76] Zhao L D, Zhang P B, Li J F, Zhou M, Liu W S and Liu J 2008 J. Alloys Compd. 455 259
[77] Gelbstein Y, Gotesman G, Lishzinker Y, Dashevsky Z and Dariel M P 2008 Scr. Mater. 58 251
[78] Cui J L, Qian X and Zhao X B 2003 J. Alloys Compd. 358 228
[79] Darrow W B W M S and Roy R 1969 J. Mater. Sci. 313
[80] Zhao L, Wang X, Fei F Y, Wang J, Cheng Z, Dou S, Wanga J and Snyder G J 2015 J. Mater. Chem. A 3 9432
[81] Davidow J and Gelbstein Y 2013 J. Electron. Mater. 42 7
[82] Perumal S, Roychowdhury S and Biswas K 2016 Inorg. Chem. Front. 3 125
[83] Li G, Gadelrab K R, Souier T, Potapov P L, Chen G and Chiesa M 2012 Nanotechnology 23 065703
[84] Fanciulli C, Coduri M, Boldrini S, Abedi H, Tomasi C, Famengo A, Ferrario A, Fabrizio M and Passaretti F 2017 J. Nanosci. Nanotechnol. 17 1571
[85] Kergommeaux A D, Faure-Vincent J, Pron A, Bettignies R, Malaman B and Reiss P 2012 J. Am. Chem. Soc. 134 11659
[86] Li Y, He B, Heremans J P and Zhao J C 2016 J. Alloys Compd. 669 224
[87] Keuleyan S, Wang M J, Chung F R, Commons J and Koski K J 2015 Nano Lett. 15 2258
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[8] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[9] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[10] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[11] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[12] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
[13] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[14] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[15] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
No Suggested Reading articles found!