Special Issue:
TOPICAL REVIEW — Recent advances in thermoelectric materials and devices
|
TOPIC REVIEW—Recent advances in thermoelectric materials and devices |
Prev
Next
|
|
|
Recent advances in non-Pb-based group-IV chalcogenides for environmentally-friendly thermoelectric materials |
Bing-Sheng Du(杜炳生)1, Ji-Kang Jian(简基康)1, Hai-Tao Liu(刘海涛)1,2, Jiao Liu(刘骄)1, Lei Qiu(邱磊)1 |
1. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
2. School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China |
|
|
Abstract Pb-based group-IV chalcogenides including PbTe and PbSe have been extensively studied as high performance thermoelectric materials during the past few decades. However, the toxicity of Pb inhibits their applications in vast fields due to the serious harm to the environment. Recently the Pb-free group-IV chalcogenides have become an extensive research subject as promising thermoelectric materials because of their unique thermal and electronic transport properties as well as the enviromentally friendly advantage. This paper briefly summarizes the recent research advances in Sn-, Ge-, and Si-chalcogenides thermoelectrics, showing the unexceptionally high thermoelectric performance in SnSe single crystal, and the significant improvement in thermoelectric performance for those polycrystalline materials by successfully modulating the electronic and thermal transport through using some well-developed strategies including band engineering, nanostructuring and defect engineering. In addition, some important issues for future device applications, including N-type doping and mechanical and chemical stabilities of the new thermoelectrics, are also discussed.
|
Received: 19 December 2017
Revised: 24 January 2018
Accepted manuscript online:
|
PACS:
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
28.41.Ak
|
(Theory, design, and computerized simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51472052 and U1601213). |
Corresponding Authors:
Ji-Kang Jian
E-mail: jianjikang@126.com
|
Cite this article:
Bing-Sheng Du(杜炳生), Ji-Kang Jian(简基康), Hai-Tao Liu(刘海涛), Jiao Liu(刘骄), Lei Qiu(邱磊) Recent advances in non-Pb-based group-IV chalcogenides for environmentally-friendly thermoelectric materials 2018 Chin. Phys. B 27 048102
|
[1] |
Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energy & Environmental Science 2 466
|
[2] |
Pan L, Bérardan D, Zhao L D, Barreteau C and Dragoe N 2013 Appl. Phys. Lett. 102 023902
|
[3] |
Pei Y L, Tan G J, Feng D, Zheng L, Tan Q, Xie X B, Gong S K, Chen Y, Li J F, He J Q, KanatzidisMG and Zhao L D 2017 Adv. Energy Mater. 7 1601450
|
[4] |
Qin P, Qian X, Ge Z H, Zheng L, Feng J, Zhao L D 2017 Inorg. Chem. Front. 4 1192
|
[5] |
Zhao H Z, Cao B L, Li S M, Liu N, Shen J W, Li S, Jian J K, Gu L, Pei Y Z, Snyder G J, Ren Z F and Chen X L 2017 Adv. Energy Mater. 7 1700446
|
[6] |
Kim Y J, Zhao L D, Kanatzidis M G and Seidman D N 2017 ACS Appl. Mater. Interfaces 9 21791
|
[7] |
Jian Z Z, Chen Z W, Li W, Yang J, Zhang W Q and Pei Y Z 2015 J. Mater. Chem. C 3 12410
|
[8] |
Li S K, Liu X R, Liu Y D, Liu F S, Luo J and Pan F 2017 Nano Energy 39 297
|
[9] |
Tan Q, Wu C F, Sun W and Li J F 2016 RSC Adv. 6 43985
|
[10] |
Cao B L, Jian J K, Ge B H, Li S M, Wang H, Liu J and Zhao H Z 2017 Chin. Phys. B 26 017202
|
[11] |
Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y and Shi J 2017 Nature 549 247
|
[12] |
Wang S Y, Sun Y X, Yang J, Duan B, Wu L H, Zhang W Q and Yang J H 2016 Energy Environ. Sci.9 3436
|
[13] |
Ge Z H, Song D, Chong X, Zheng F, Jin L, Qian X, Zheng L, Dunin-Borkowski R E, Qin P, Feng J and Zhao L D 2017 J. Am. Chem. Soc. 139 9714
|
[14] |
Mao J, Zhou J W, Zhu H T, Liu Z H, Zhang H, He R, Chen G and Ren Z F 2017 Chem. Mater. 29 867
|
[15] |
Hong M, Chasapis T C, Chen Z G, Yang L, Kanatzidis M G, Snyder G J and Zou J 2016 ACS Nano 10 4719
|
[16] |
Yamini S A, Mitchell David R G, Gibbs Zachary M, Santos R, Patterson V, Li S, Pei Y Z, Dou S X and Jeffrey Snyder G 2015 Adv. Energy Mater. 5 1501047
|
[17] |
Li W, Wu Y X, Lin S Q, Chen Z W, Li J, Zhang X Y, Zheng L L and Pei Y Z 2017 ACS Energy Lett. 2 2349
|
[18] |
Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, Huang M, Snyder G J and Pei Y Z 2017 Adv. Mater. 29 1606768
|
[19] |
Zhao L D, Lo S, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
|
[20] |
Ding G, Gao G and Yao K. 2015 Sci. Rep. 5 9567
|
[21] |
Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y and Pei Y Z 2017 Adv. Mater. 29 1605887
|
[22] |
Li J Q, Deng J F, Li S K, Li Y, Liu F S and Ao W Q 2015 Intermetallics 56 63
|
[23] |
Wang H, Schechtel E, Pei Y Z, Snyder G and Jeffrey 2013 Adv. Energy Mater. 3 488
|
[24] |
Guo R Q, Wang X J, Kuang Y D and Huang B L 2015 Phys. Rev. B 92 115202
|
[25] |
Perumal S, Roychowdhury S, Negi D S, Datta R J and Biswas K 2015 Chem. Mater. 27 7171
|
[26] |
Hao S Q, Shi F Y, Dravid V P, Kanatzidis M G and Wolverton C 2016 Chem. Mater. 28 3218
|
[27] |
Yang J H, Yuan Q H, Deng H X, Wei S H and Yakobson B I. 2017 The J. Phys. Chem. C 121 123
|
[28] |
Juneja R, Pandey T and Singh A K 2017 Chem. Mater. 29 3723
|
[29] |
Shafique A and Shin Y H 2017 Sci. Rep. 7 506
|
[30] |
Brebrick R F and Strauss A J 1963 Phys. Rev. 131 104
|
[31] |
Zhao L D, Chang C, Tan G J and Kanatzidis M G 2016 Energy & Environ. Sci. 9 3044
|
[32] |
Cao J, Wang Z, Zhan X, Wang Q, Safdar M, Wang Y and He J 2014 Nanotechnology 25 105705
|
[33] |
Biljana P and Atanas T 2008 J. Phys. Chem. C 112 3535
|
[34] |
Matthew A F, Cody W S, Mark E T and Richard L B 2010 J. Am. Chem. Soc. 132 4060
|
[35] |
Liu J, Jian J K, Yu Z Q, Zhang Z H, Cao B L and Du B S 2017 Crystal Growth & Design 17 6163
|
[36] |
Butt Faheem K, Mirza M, Cao C B, Idrees F, Tahir M, Safdar M, Ali Z, Tanveer M and Aslam I 2014 CrystEngComm 16 3470
|
[37] |
Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141
|
[38] |
Peng K L, Lu X, Zhan H, Hui S, Tang X D, Wang G W, Dai J Y, Uher C, Wang G Y and Zhou X Y 2016 Energy & Environ. Sci. 9 454
|
[39] |
Sassi S, Candolfi C, Vaney J B, Ohorodniichuk V, Masschelein P, Dauscher A and Lenoir B 2014 Appl. Phys. Lett. 104 212105
|
[40] |
Feng D, Ge Z H, Chen Y X, Li J and He J Q 2017 Nanotechnology 28 455707
|
[41] |
Guo J, Jian J K, Liu J, Cao B L, Lei R B, Zhang Z H, Song B and Zhao H Z 2017 Nano Energy 38 569
|
[42] |
Tang G D, Wei W, Zhang J, Li Y S, Wang X, Xu G Z, Chang C, Wang Z H, Du Y W and Zhao L D 2016 J. Am. Chem. Soc. 138 1647
|
[43] |
Lee Y K, Ahn K, Cha J, Zhou C, Kim H S, Choi G, Chae S I, Park J H, Cho S P, Park S H, Sung Y E, Lee W B, Hyeon T and Chung I 2017 J. Am. Chem. Soc. 139 10887
|
[44] |
Guo H F, Xin H X, Qin X Y, Zhang J, Li D, Li Y Y, Song C J and Li C 2016 J. Alloys Compd. 689 87
|
[45] |
Wei T R, Tan G, Zhang X, Wu C F, Li J F, Dravid V P, Snyder G J and Kanatzidis M G 2016 J. Am. Chem. Soc. 138 8875
|
[46] |
Han Y M, Zhao J, Zhou M, Jiang X X, Leng H Q and Li L F 2015 J. Mater. Chem. A 3 4555
|
[47] |
Asfandiyar, Wei T R, Li Z, Sun F, Pan Y, Wu C F, Farooq M U, Tang H, Li F, Li B and Li J F 2017 Sci. Rep. 7 43262
|
[48] |
Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B and Kanatzidis Mercouri G. 2014 J. Mater. Chem. A 2 17302
|
[49] |
Wang H C, Hwang J, Zhang C, Wang T, Su W B, Kim H, Kim J, Zhai J Z, Wang X, Park H J, Kim W and Wang C 2017 J. Mater. Chem. A 5 14165
|
[50] |
Zhang X, Wang D Y, Wu H J, Yin M J, Pei Y L, Gong S K, Huang Li, Pennycook S J, He J Q and Zhao L D 2017 Energy & Environ. Sci. 10 2420
|
[51] |
Zhang X, Zhou Y M, Pei Y L, Chen Y X, Yuan B F, Zhang S M, Deng Y, Gong S K, He J Q and Zhao L D 2017 J. Alloys Compd. 709 575
|
[52] |
Cook B A, Kramer M J, Wei X, Harringa J L and Levin E M 2007 J. Appl. Phys. 101 053715
|
[53] |
Perumal S, Roychowdhury S and Biswas K 2016 J. Mater. Chem. C 4 7520
|
[54] |
Manisha S, Subhajit R, Jay G, Suresh P and Kanishka B 2017 Chem. Eur. J. 23 7438
|
[55] |
Samanta M and Biswas K 2017 J. Am. Chem. Soc. 139 9382
|
[56] |
Wu L H, Li X, Wang S Y, Zhang T S, Yang J, Zhang W Q, Chen L D and Yang J H 2017 NPG Asia Mater. 9 e343
|
[57] |
Li J, Chen Z W, Zhang X Y, Sun Y X, Yang J and Pei Y Z 2017 NPG Asia Mater. 9 e353
|
[58] |
Ros F D, Dismukes J P and Hockings E F 1960 Electrical Engineering 79 450
|
[59] |
Chen Y, Jaworski C M, Gao Y B, Wang H, Zhu T J, Snyder G J, Heremans J P and Zhao X B 2014 New J. Phys. 16 013057
|
[60] |
Huang Z, Miller S A, Ge B, Yan M, Anand S, Wu T, Nan P, Zhu Y, ZhuangW, Snyder G J, Jiang P and Bao X 2017 Angew Chem. Int. Ed. Engl. 56 14113
|
[61] |
Zhang X Y, Shen J W, Lin S Q, Li J, Chen Z W, Li W and Pei Y Z 2016 J. Materiomics 2 331
|
[62] |
Keuleyan S, Wang M, Chung F R, Commons J and Koski K J 2015 Nano Lett. 15 2285
|
[63] |
Duong A T, Nguyen V Q, Duvjir G, Duong V T, Kwon S, Song J Y, Lee J K, Lee J E, Park S, Min T, Lee J, Kim J and Cho S 2016 Nat. Commun. 7 13713
|
[64] |
Hughes M A, Fedorenko Y, Gholipour B, Yao J, Lee T H, Gwilliam R M, Homewood K P, Hinder S, Hewak D W, Elliott S R and Curry R J 2014 Nat. Commun. 5 5346
|
[65] |
Shimano S, Tokura Y and Taguchi Y 2017 APL Mater. 5 056103
|
[66] |
Li F, Wang W T, Qiu X C, Zheng Z H, Fan P, Luo J T and Li B 2017 Inorg. Chem. Front. 4 1721
|
[67] |
Haldolaarachchige N, Gibson Q, Xie W W, Nielsen M B, Kushwaha S and Cava R J 2016 Phys. Rev. B 93 024520
|
[68] |
Li D B, Tan X J, Xu J T, Liu G Q, Jin M, Shao H Z, Huang H J, Zhang J F and Jiang J 2017 RSC Adv. 7 17906
|
[69] |
Wang X, Xu J, Liu G Q, Fu Y J, Liu Z, Tan X J, Shao H Z, Jiang H C, Tan T Y and Jiang J 2016 Appl. Phys. Lett. 108 083902
|
[70] |
Pei Y Z, Gibbs Z M, Gloskovskii A, Balke B, Zeier W G and Snyder G Jeffrey 2014 Adv. Energy Mater. 4 1400486
|
[71] |
Kutorasinski K, Wiendlocha B, Kaprzyk S and Tobola J 2015 Phys. Rev. B 91 205201
|
[72] |
Nassary M M 2009 Turk. J. Phys. 33 201
|
[73] |
Yang J M, Zhang J B, Yang G, Wang C and Wang Y X 2015 J. Alloys Compd. 644 615
|
[74] |
Erdemir A 1994 Tribology Transactions 37 471
|
[75] |
Zallen R and Slade M 1974 Phys. Rev. B 9 1627
|
[76] |
Zhao L D, Zhang P B, Li J F, Zhou M, Liu W S and Liu J 2008 J. Alloys Compd. 455 259
|
[77] |
Gelbstein Y, Gotesman G, Lishzinker Y, Dashevsky Z and Dariel M P 2008 Scr. Mater. 58 251
|
[78] |
Cui J L, Qian X and Zhao X B 2003 J. Alloys Compd. 358 228
|
[79] |
Darrow W B W M S and Roy R 1969 J. Mater. Sci. 313
|
[80] |
Zhao L, Wang X, Fei F Y, Wang J, Cheng Z, Dou S, Wanga J and Snyder G J 2015 J. Mater. Chem. A 3 9432
|
[81] |
Davidow J and Gelbstein Y 2013 J. Electron. Mater. 42 7
|
[82] |
Perumal S, Roychowdhury S and Biswas K 2016 Inorg. Chem. Front. 3 125
|
[83] |
Li G, Gadelrab K R, Souier T, Potapov P L, Chen G and Chiesa M 2012 Nanotechnology 23 065703
|
[84] |
Fanciulli C, Coduri M, Boldrini S, Abedi H, Tomasi C, Famengo A, Ferrario A, Fabrizio M and Passaretti F 2017 J. Nanosci. Nanotechnol. 17 1571
|
[85] |
Kergommeaux A D, Faure-Vincent J, Pron A, Bettignies R, Malaman B and Reiss P 2012 J. Am. Chem. Soc. 134 11659
|
[86] |
Li Y, He B, Heremans J P and Zhao J C 2016 J. Alloys Compd. 669 224
|
[87] |
Keuleyan S, Wang M J, Chung F R, Commons J and Koski K J 2015 Nano Lett. 15 2258
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|