Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047305    DOI: 10.1088/1674-1056/27/4/047305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions

Wei Mao(毛维)1, Hai-Yong Wang(王海永)1, Peng-Hao Shi(石朋毫)1, Xiao-Fei Wang(王晓飞)2, Ming Du(杜鸣)1, Xue-Feng Zheng(郑雪峰)1, Chong Wang(王冲)1, Xiao-Hua Ma(马晓华)1, Jin-Cheng Zhang(张进成)1, Yue Hao(郝跃)1
1. Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2. School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  A novel GaN-based vertical heterostructure field effect transistor (HFET) with nonuniform doping superjunctions (non-SJ HFET) is proposed and studied by Silvaco-ATLAS, for minimizing the specific on-resistance (RonA) at no expense of breakdown voltage (BV). The feature of non-SJ HFET lies in the nonuniform doping concentration from top to bottom in the n-and p-pillars, which is different from that of the conventional GaN-based vertical HFET with uniform doping superjunctions (un-SJ HFET). A physically intrinsic mechanism for the nonuniform doping superjunction (non-SJ) to further reduce RonA at no expense of BV is investigated and revealed in detail. The design, related to the structure parameters of non-SJ, is optimized to minimize the RonA on the basis of the same BV as that of un-SJ HFET. Optimized simulation results show that the reduction in RonA depends on the doping concentrations and thickness values of the light and heavy doping parts in non-SJ. The maximum reduction of more than 51% in RonA could be achieved with a BV of 1890 V. These results could demonstrate the superiority of non-SJ HFET in minimizing RonA and provide a useful reference for further developing the GaN-based vertical HFETs.
Keywords:  GaN-based vertical HFETs      nonuniform doping superjunctions      minimized specific on-resistance      breakdown voltage  
Received:  21 December 2017      Revised:  08 February 2018      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574112, 61334002, 61474091, and 61574110) and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 605119425012).
Corresponding Authors:  Xiao-Fei Wang     E-mail:  mxfwang@xjtu.edu.cn

Cite this article: 

Wei Mao(毛维), Hai-Yong Wang(王海永), Peng-Hao Shi(石朋毫), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions 2018 Chin. Phys. B 27 047305

[1] Wang L, Hu W D, Chen X S, Lu W 2010 Acta Phys. Sin. 59 5730(in Chinese)
[2] Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Ma X H, Wang C, Zhang J F, Yang L A, Xu S R, Bi Z W, Zhou Z, Yang L, Wang H 2011 Acta Phys. Sin. 60 017205(in Chinese)
[3] Huang H, Liang Y C, Samudra G S, Chang T F and Huang C F 2014 IEEE Trans. Power Electron. 29 2164
[4] Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C, Hao Y 2016 Chin. Phys. B 25 127305
[5] Li S P, Zhang Z L, Fu K, Yu G H, Cai Y, Zhang B S 2017 Acta Phys. Sin. 66 197301(in Chinese)
[6] Zhang L, Lin Z Y, Luo J, Wang S L, Zhang J C, Hao Y, Dai Y, Chen D Z, Guo L X 2017 Acta Phys. Sin. 66 247302(in Chinese)
[7] Chowdhury S, Wong M H, Swenson B L and Mishra U K 2012 IEEE Electron Dev. Lett. 33 41
[8] Mal S, Agarwal A, Ahmadi E, Bhat K M, Ji D, Laurent M A, Keller S and Chowdhury S 2017 IEEE Electron Dev. Lett. 38 933
[9] Saito W, Kuraguchi M, Takada Y, Tsuda K, Omura I and Ogura T 2005 IEEE Trans. Electron Dev. 52 106
[10] Shrestha N M, Wang Y Y, Li Y M and Chang E Y 2015 Vacuum 118 59
[11] Li Z D and Chow T P 2013 IEEE Trans. Electron Dev. 60 3230
[12] Du J F, Liu D, Zhao Z Q, Bai Z Y, Li L, Mo J H and Yu Q 2015 Superlattices Microstruct. 83 251
[13] Du J F, Liu D, Bai Z Y, Liu Y, Yu Q 2015 Superlattices Microstruct. 85 690
[14] Nie H, Diduck Q, Alvarez B, Edwards A P, Kayes B M, Zhang M, Ye G, Prunty T, Bour D and Kizilyalli I C 2014 IEEE Electron Dev. Lett. 35 939
[15] Chowdhury S and Mishra U K 2013 IEEE Trans. Electron Dev. 60 3060
[16] Yeluri R, Lu J, Hurni C A, Browne D A, Chowdhury S, Keller S, Speck J S and Mishra U K 2015 Appl. Phys. Lett. 106 183502
[17] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[18] Mnatsakanov T T, Levinshtein M E, Pomortseva L I, Yurkov S N, Simin G S and Khan M A 2003 Solid-State Electron. 47 111
[19] Oǧuzman I H, Bellotti E, Brennan K F, Kolník J, Rongping W, and Ruden P P 1997 J. Appl. Phys. 81 7827
[20] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[21] Piprek J 2003 Semiconductor optoelectronic devices:Introduction to physics and simulation (California:Elsevier Science)
[22] Usikov A, Kovalenkov O, Soukhoveev V, Ivantsov V, Syrkin A, Dmitriev V, Nikiforov A Y, Sundaresan S G, Jeliazkov S J and Davydov A V 2008 Phys. Stat. Sol. 5 1829
[23] Paskova T, Hanser D A and Evans K R 2010 Proc. IEEE 98 1324
[24] Tourret J, Gourmala O, Andre Y, Trassoudaine A, Gil E, Castelluci D and Cadoret R 2009 J. Cryst. Growth 311 1460
[25] Cho H K, Khan F A, Adesida I, Fang Z Q and Look D C 2008 J. Phys. D:Appl. Phys. 41 155314
[26] Liu Z C, Pan J L, Asano A, Ishikawa K, Takeda K, Kondo H, Oda O, Sekine M and Hori M 2017 Jpn. J. Appl. Phys. 56 026502
[27] Hartmann J, Steib F, Zhou H, Ledig J, Nicolai L, Fündling S, Schimpke T, Avramescu A, Varghese T, Trampert A, Stra å burg M, Lugauer H J, Wehmann H H and Waag A 2017 J. Cryst. Growth 476 90
[28] Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q H and Nikolic R J 2017 J. Vac. Sci. Technol. A 35 061303
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!