CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions |
Wei Mao(毛维)1, Hai-Yong Wang(王海永)1, Peng-Hao Shi(石朋毫)1, Xiao-Fei Wang(王晓飞)2, Ming Du(杜鸣)1, Xue-Feng Zheng(郑雪峰)1, Chong Wang(王冲)1, Xiao-Hua Ma(马晓华)1, Jin-Cheng Zhang(张进成)1, Yue Hao(郝跃)1 |
1. Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; 2. School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract A novel GaN-based vertical heterostructure field effect transistor (HFET) with nonuniform doping superjunctions (non-SJ HFET) is proposed and studied by Silvaco-ATLAS, for minimizing the specific on-resistance (RonA) at no expense of breakdown voltage (BV). The feature of non-SJ HFET lies in the nonuniform doping concentration from top to bottom in the n-and p-pillars, which is different from that of the conventional GaN-based vertical HFET with uniform doping superjunctions (un-SJ HFET). A physically intrinsic mechanism for the nonuniform doping superjunction (non-SJ) to further reduce RonA at no expense of BV is investigated and revealed in detail. The design, related to the structure parameters of non-SJ, is optimized to minimize the RonA on the basis of the same BV as that of un-SJ HFET. Optimized simulation results show that the reduction in RonA depends on the doping concentrations and thickness values of the light and heavy doping parts in non-SJ. The maximum reduction of more than 51% in RonA could be achieved with a BV of 1890 V. These results could demonstrate the superiority of non-SJ HFET in minimizing RonA and provide a useful reference for further developing the GaN-based vertical HFETs.
|
Received: 21 December 2017
Revised: 08 February 2018
Accepted manuscript online:
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574112, 61334002, 61474091, and 61574110) and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 605119425012). |
Corresponding Authors:
Xiao-Fei Wang
E-mail: mxfwang@xjtu.edu.cn
|
Cite this article:
Wei Mao(毛维), Hai-Yong Wang(王海永), Peng-Hao Shi(石朋毫), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions 2018 Chin. Phys. B 27 047305
|
[1] |
Wang L, Hu W D, Chen X S, Lu W 2010 Acta Phys. Sin. 59 5730(in Chinese)
|
[2] |
Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Ma X H, Wang C, Zhang J F, Yang L A, Xu S R, Bi Z W, Zhou Z, Yang L, Wang H 2011 Acta Phys. Sin. 60 017205(in Chinese)
|
[3] |
Huang H, Liang Y C, Samudra G S, Chang T F and Huang C F 2014 IEEE Trans. Power Electron. 29 2164
|
[4] |
Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C, Hao Y 2016 Chin. Phys. B 25 127305
|
[5] |
Li S P, Zhang Z L, Fu K, Yu G H, Cai Y, Zhang B S 2017 Acta Phys. Sin. 66 197301(in Chinese)
|
[6] |
Zhang L, Lin Z Y, Luo J, Wang S L, Zhang J C, Hao Y, Dai Y, Chen D Z, Guo L X 2017 Acta Phys. Sin. 66 247302(in Chinese)
|
[7] |
Chowdhury S, Wong M H, Swenson B L and Mishra U K 2012 IEEE Electron Dev. Lett. 33 41
|
[8] |
Mal S, Agarwal A, Ahmadi E, Bhat K M, Ji D, Laurent M A, Keller S and Chowdhury S 2017 IEEE Electron Dev. Lett. 38 933
|
[9] |
Saito W, Kuraguchi M, Takada Y, Tsuda K, Omura I and Ogura T 2005 IEEE Trans. Electron Dev. 52 106
|
[10] |
Shrestha N M, Wang Y Y, Li Y M and Chang E Y 2015 Vacuum 118 59
|
[11] |
Li Z D and Chow T P 2013 IEEE Trans. Electron Dev. 60 3230
|
[12] |
Du J F, Liu D, Zhao Z Q, Bai Z Y, Li L, Mo J H and Yu Q 2015 Superlattices Microstruct. 83 251
|
[13] |
Du J F, Liu D, Bai Z Y, Liu Y, Yu Q 2015 Superlattices Microstruct. 85 690
|
[14] |
Nie H, Diduck Q, Alvarez B, Edwards A P, Kayes B M, Zhang M, Ye G, Prunty T, Bour D and Kizilyalli I C 2014 IEEE Electron Dev. Lett. 35 939
|
[15] |
Chowdhury S and Mishra U K 2013 IEEE Trans. Electron Dev. 60 3060
|
[16] |
Yeluri R, Lu J, Hurni C A, Browne D A, Chowdhury S, Keller S, Speck J S and Mishra U K 2015 Appl. Phys. Lett. 106 183502
|
[17] |
Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
|
[18] |
Mnatsakanov T T, Levinshtein M E, Pomortseva L I, Yurkov S N, Simin G S and Khan M A 2003 Solid-State Electron. 47 111
|
[19] |
Oǧuzman I H, Bellotti E, Brennan K F, Kolník J, Rongping W, and Ruden P P 1997 J. Appl. Phys. 81 7827
|
[20] |
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
|
[21] |
Piprek J 2003 Semiconductor optoelectronic devices:Introduction to physics and simulation (California:Elsevier Science)
|
[22] |
Usikov A, Kovalenkov O, Soukhoveev V, Ivantsov V, Syrkin A, Dmitriev V, Nikiforov A Y, Sundaresan S G, Jeliazkov S J and Davydov A V 2008 Phys. Stat. Sol. 5 1829
|
[23] |
Paskova T, Hanser D A and Evans K R 2010 Proc. IEEE 98 1324
|
[24] |
Tourret J, Gourmala O, Andre Y, Trassoudaine A, Gil E, Castelluci D and Cadoret R 2009 J. Cryst. Growth 311 1460
|
[25] |
Cho H K, Khan F A, Adesida I, Fang Z Q and Look D C 2008 J. Phys. D:Appl. Phys. 41 155314
|
[26] |
Liu Z C, Pan J L, Asano A, Ishikawa K, Takeda K, Kondo H, Oda O, Sekine M and Hori M 2017 Jpn. J. Appl. Phys. 56 026502
|
[27] |
Hartmann J, Steib F, Zhou H, Ledig J, Nicolai L, Fündling S, Schimpke T, Avramescu A, Varghese T, Trampert A, Stra å burg M, Lugauer H J, Wehmann H H and Waag A 2017 J. Cryst. Growth 476 90
|
[28] |
Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q H and Nikolic R J 2017 J. Vac. Sci. Technol. A 35 061303
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|