Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 075201    DOI: 10.1088/1674-1056/23/7/075201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Balmer-alpha and Balmer-beta Stark line intensity profiles for high-power hydrogen inductively coupled plasmas

Wang Song-Bai (王松柏)a b, Lei Guang-Jiu (雷光玖)c, Liu Dong-Ping (刘东平)a, Yang Si-Ze (杨思泽)a
a School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China;
b College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China;
c Southwestern Institute of Physics, Chengdu 610041, China
Abstract  We compare Balmer-alpha (Hα) and Balmer-beta (Hβ) emissions from high-power (1.0-6.0 kW) hydrogen inductively coupled plasmas (ICPs), and propose region I (0.0-2.0 kW), region Ⅱ (2.0-5.0 kW), and region Ⅲ (5.0-6.0 kW). In region I, both Hα emission intensity (Iα) and Hβ emission intensity (Iβ) increase with radio frequency (RF) power, which is explained by the corona model and Boltzmann's law, etc. However, in region Ⅱ, Iα almost remains constant while Iβ rapidly achieves its maximum value. In region Ⅲ, Iα slightly increases with RF power, while Iβ decreases with RF power, which deviates significantly from the theoretical explanation for the Hα and Hβ emissions in region I. It is suggested that two strong electric fields are generated in high-power (2.0-6.0 kW) hydrogen ICPs: one is due to the external electric field of high-power RF discharge, and the other one is due to the micro electric field of the ions and electrons around the exited state hydrogen atoms in ICPs. Therefore, the strong Stark effect can play an important role in explaining the experimental results.
Keywords:  high-power radio frequency plasma      Hα and Hβ spectral lines in hydrogen ICPs      Stark effect  
Received:  12 October 2013      Revised:  17 March 2014      Accepted manuscript online: 
PACS:  52.27.Gr (Strongly-coupled plasmas)  
  52.27.-h (Basic studies of specific kinds of plasmas)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB108011 and 2010GB103001) and the Major International (Regional) Project Cooperation and Exchanges (Grant No. 11320101005).
Corresponding Authors:  Lei Guang-Jiu, Liu Dong-Ping     E-mail:  gjlei@swip.ac.cn;dongping.liu@dlnu.edu.cn
About author:  52.27.Gr; 52.27.-h

Cite this article: 

Wang Song-Bai (王松柏), Lei Guang-Jiu (雷光玖), Liu Dong-Ping (刘东平), Yang Si-Ze (杨思泽) Balmer-alpha and Balmer-beta Stark line intensity profiles for high-power hydrogen inductively coupled plasmas 2014 Chin. Phys. B 23 075201

[1] Janev R K, Boley C D and Post D E 1989 Nucl. Fusion 29 2125
[2] Hutchinson I H 2002 Principles of Plasma Diagnostics (Cambridge: Cambridge University Press)
[3] Fantz U 2004 Plasma Phys. 44 508
[4] Duan X R, Lange H, Qian S J and Lang N 2003 Chin. Phys. Lett. 20 489
[5] Cui J B and Fang R C 1996 Chin. Phys. Lett. 13 192
[6] Johnson L C and Hinnov E J 1973 Quantum Spectrosc. Radiat. Trans. 13 333
[7] Drawin H W and Emard F 1976 Physica B 85 333
[8] Zikié R, Gignos M A, Ivković M, González M Á and Konjević N 2002 Spectrochim Acta B 57 987
[9] Gignos M A, González M Á and Cardenoso V 2003 Spectrochim Acta B 58 1489
[10] Chen C K, Wei T C, Collins L R and Phillips J 1999 J. Phys. D: Appl. Phys. 32 688
[11] Satoru T, Xiao B J, Kazuki K and Morita M 2000 Plasma Phys. Control. Fusion 42 1091
[12] Fantz U and Heger B 1998 Plasma Phys. Control. Fusion 40 2023
[13] Zhu Y H, Wu W D, Tang Y J and Sun W G 2008 Chin. J. Vac. Sci. Tech. 28 308 (in Chinese)
[14] Deng H Y, Wang J K, Wu W D, Cheng X L and Yang X D 2005 J. At. Mol. Phys. 4 256 (in Chinese)
[15] Wang J K, Wu W D, Sun W G, Deng H Y, Cheng X L and Tang Y J 2005 Chinese High Power Laser and Particle Beams 10 1513 (in Chinese)
[16] Qiu D R 2002 Atomic Spectra Analysis (1st edn.) (Shanghai: Fudan University Press) pp. 36-43 (in Chinese)
[17] Xin R X 2011 Plasma Emission Spectra Analysis (2nd edn.) (Beijing: Chemical Industry Press) p. 122 (in Chinese)
[18] Young H D and Freedman R A 2011 Sears and Zemansky's University Physics with Modern Physics (12th edn.) (Beijing: Mechanical Industry Press) p. 1317
[19] Keiji S and Takashi F 1995 J. Appl. Phys. 78 2913
[20] Chen C K and Wei T C 1999 J. Phys. D: Appl. Phys. 32 688
[21] Xiao B J, Kado S, Kajita S and Yamasaki D 2004 Plasma Phys. Control. Fusion 46 653
[22] Behringer K and Fantz U 2000 New J. Phys. 2 1
[23] Fang T Z, Wang L, Jiang D M and Zhang H X 2001 Chin. Phys. Lett. 18 1098
[24] Tang P Y, Liu T, Ding B N and Dai J Y 2003 Chinese High Power Laser and Particle Beams 15 293 (in Chinese)
[25] Mishra M K and Phukan A 2008 Chin. Phys. Lett. 25 1011
[26] Zhang C X 2005 Journal of Anhui Normal University (Natural Science) 28 407 (in Chinese)
[1] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[2] Hyperfine structures and the field effects of IBr molecule in its rovibronic ground state
Defu Wang(王得富), Xuping Shao(邵旭萍), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), and Xiaohua Yang(杨晓华). Chin. Phys. B, 2021, 30(11): 113301.
[3] Ellipticity-dependent ionization yield for noble atoms
Hristina Deliba?i?, Violeta Petrovi?. Chin. Phys. B, 2019, 28(8): 083201.
[4] Laser-assisted Stark deceleration of CaF in its rovibronic ground (high-field-seeking) state
Yuefeng Gu(顾跃凤), Kai Chen(陈凯), Yunxia Huang(黄云霞), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(4): 043702.
[5] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[6] Stark effect of the hyperfine structure of ICl in its rovibronic ground state: Towards further molecular cooling
Qing-Hui Wang(王庆辉), Xu-Ping Shao(邵旭萍), Xiao-Hua Yang(杨晓华). Chin. Phys. B, 2016, 25(1): 013301.
[7] Nonlinear spectroscopy of barium in parallel electric and magnetic fields
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Hong-Ping (刘红平). Chin. Phys. B, 2014, 23(10): 103201.
[8] Effects of prestrained InGaN interlayer on the emission properties of InGaN/GaN multiple quantum wells in a laser diode structure
Cao Wen-Yu (曹文彧), He Yong-Fa (贺永发), Chen Zhao (陈钊), Yang Wei (杨薇), Du Wei-Min (杜为民), Hu Xiao-Dong (胡晓东). Chin. Phys. B, 2013, 22(7): 076803.
[9] Stark spectrum of barium in highly excited Rydberg states
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Xiao-Jun (柳晓军), Liu Hong-Ping (刘红平). Chin. Phys. B, 2013, 22(1): 013202.
[10] Screening influence on the Stark effect of impurity states in strained wurtzite GaN/AlxGa1-xN heterojunctions under pressure
Zhang Min(张敏) and Ban Shi-Liang(班士良) . Chin. Phys. B, 2009, 18(12): 5437-5442.
[11] Pressure influence on the Stark effect of impurity states in a strained wurtzite GaN/AlxGa1-xN heterojunction
Zhang Min(张敏) and Ban Shi-Liang(班士良). Chin. Phys. B, 2009, 18(10): 4449-4455.
[12] Theoretical study of slowing supersonic CH3F molecular beams using electrostatic Stark decelerator
Deng Lian-Zhong(邓联忠), Fu Guang-Bin(符广彬), and Yin Jian-Ping(印建平). Chin. Phys. B, 2009, 18(1): 149-156.
[13] Electrostatic surface guiding of cold polar molecules with a single charged wire
Deng Lian-Zhong(邓联忠), Xia Yong(夏勇), and Yin Jian-Ping(印建平). Chin. Phys. B, 2007, 16(3): 707-717.
[14] On the binding energies of excitons in polar quantum well structures in a weak electric field
Wu Yun-Feng (吴云峰), Liang Xi-Xia (梁希侠), K. K. Baja. Chin. Phys. B, 2005, 14(11): 2314-2319.
[15] Theoretical study of quantum confined Stark shift in InAs/GaAs quantum dots
Guo Ru-Hai (郭汝海), Shi Hong-Yan (时红艳), Sun Xiu-Dong (孙秀冬). Chin. Phys. B, 2004, 13(12): 2141-2146.
No Suggested Reading articles found!