|
|
Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3 |
Minhao Zhang(张敏昊)1, Yan Li(李焱)1, Fengqi Song(宋凤麒)2, Xuefeng Wang(王学锋)1, Rong Zhang(张荣)1 |
1. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Quantum phase transition in topological insulators has drawn heightened attention in condensed matter physics and future device applications. Here we report the magnetotransport properties of single crystalline (Bi0.92In0.08)2Se3. The average mobility of~1000 cm2·V-1·s-1 is obtained from the Lorentz law at the low field (< 3 T) up to 50 K. The quantum oscillations rise at a field of~5 T, revealing a high mobility of~1.4×104 cm2·V-1·s-1 at 2 K. The Dirac surface state is evident by the nontrivial Berry phase in the Landau-Fan diagram. The properties make the (Bi0.92In0.08)2Se3 a promising platform for the investigation of quantum phase transition in topological insulators.
|
Received: 24 October 2017
Revised: 29 October 2017
Accepted manuscript online:
|
PACS:
|
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB921103 and 2017YFA0206304), the National Natural Science Foundation of China (Grant Nos. U1732159 and 11274003), and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, China. |
Corresponding Authors:
Xuefeng Wang
E-mail: xfwang@nju.edu.cn
|
Cite this article:
Minhao Zhang(张敏昊), Yan Li(李焱), Fengqi Song(宋凤麒), Xuefeng Wang(王学锋), Rong Zhang(张荣) Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3 2017 Chin. Phys. B 26 127305
|
[1] |
Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
|
[2] |
Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussian Z and Shen Z X 2009 Science 325 178
|
[3] |
Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
|
[4] |
Xiu F X and Zhao T T 2013 Chin. Phys. B 22 096104
|
[5] |
Guo J H, Qiu F, Zhang Y, Deng H Y, Hu G J, Li X N, Yu G L and Dai N 2013 Chin. Phys. Lett. 30 106801
|
[6] |
Sakamoto Y, Hirahara T, Miyazaki H, Kimura S I and Hasegawa S 2010 Phys. Rev. B 81 165432
|
[7] |
Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nat. Phys. 6 712
|
[8] |
Xi X X, Ma C L, Liu Z X, Chen Z Q, Ku W, Berger H, Martin C, Tanner D B and Carr G L 2013 Phys. Rev. Lett. 111 155701
|
[9] |
Lu Q, Zhang H Y, Cheng Y, Chen X R and Ji G F 2016 Chin. Phys. B 25 026401
|
[10] |
Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y H, Yao Y G and Yang S A 2017 npj Quantum Materials 2 23
|
[11] |
Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009 Science 323 919
|
[12] |
Xu S Y, Xia Y, Wray L A, Jia S, Meier F, Dil J H, Osterwalder J, Slomski B, Bansil A, Lin H, Cava R J and Hasan M Z 2011 Science 332 560
|
[13] |
Sato T, Segawa K, Kosaka K, Souma S, Nakayama K, Eto K, Minami T, Ando Y and Takahashi T 2011 Nat. Phys. 7 840
|
[14] |
Xu S Y, Liu C, Alidoust N, et al. 2012 Nat. Commun. 3 1192
|
[15] |
Brahlek M, Bansal N, Koirala N, Xu S Y, Neupane M, Liu C, Hasan M Z and Oh S 2012 Phys. Rev. Lett. 109 186403
|
[16] |
Wu L, Brahlek M, Aguilar R V, Stier A V, Morris C M, Lubashevsky Y, Bilbro L S, Bansal N, Oh S and Armitage N P 2013 Nat. Phys. 9 410
|
[17] |
Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczerbakow A, Szot M, sakowska E, Balasubramanian T, Wojek B M, Berntsen M H, Tjernberg O and Story T 2012 Nat. Mater. 11 1023
|
[18] |
Wojek B M, Berntsen M H, Jonsson V, Szczerbakow A, Dziawa P, Kowalski B J, Story T and Tjernberg O 2015 Nat. Commun. 6 8463
|
[19] |
Zeljkovic I, Okada Y, Serbyn M, Sankar R, Walkup D, Zhou W, Liu J, Chang G, Wang Y J, Hasan M Z, Chou F, Lin H, Bansil A, Fu L and Madhavan V 2015 Nat. Mater. 14 318
|
[20] |
Xu S Y, Neupane M, Belopolski I, Liu C, Alidoust N, Bian G, Jia S, Landolt G, Slomski B, Dil J H, Shibayev P P, Basak S, Chang T R, Jeng H T, Cava R J, Lin H, Bansil A and Hasan M Z 2015 Nat. Commun. 6 6870
|
[21] |
Assaf B A, Phuphachong T, Volobuev V V, Bauer G, Springholz G, Vaulchier L A and Guldner Y 2017 npj Quantum Materials 2 26
|
[22] |
Zhang C, Liu Y W, Yuan X, Wang W Y, Liang S H and Xiu F X 2015 Nano. Lett. 15 2161
|
[23] |
Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature 460 1101
|
[24] |
Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659
|
[25] |
Chen T, Chen Q, Schouteden K, Huang W, Wang X, Li Z, Miao F, Wang X, Li Z, Zhao B, Li S, Song F, Wang J, Wang B, Haesendonck C V and Wang G 2014 Nat. Commun. 5 5022
|
[26] |
Zhang S, Pi L, Wang R, Yu G, Pan X C, Wei Z, Zhang J, Xi C, Bai Z, Fei F, Wang M, Liao J, Li Y, Wang X, Song F, Zhang Y, Wang B, Xing D and Wang G 2017 Nat. Commun. 8 977
|
[27] |
Dufouleur J, Veyrat L, Teichgraber A, Neuhaus S, Nowka C, Hampel S, Cayssol J, Schumann J, Eichler B, Schmidt O G, Buchner B and Giraud R 2013 Phys. Rev. Lett. 110 186806
|
[28] |
Pan H, Zhang K, Wei Z, Wang J, Han M, Song F, Wang X, Wang B and Zhang R 2017 Appl. Phys. Lett. 110 053108
|
[29] |
Zhang K, Pan H, Wei Z, Zhang M, Song F, Wang X and Zhang R 2017 Chin. Phys. B 26 096101
|
[30] |
Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z and Wu K 2009 Appl. Phys. Lett. 95 053114
|
[31] |
Zhang J, Peng Z, Soni A, Zhao Y, Xiong Y, Peng B, Wang J, Dresselhaus M S and Xiong Q 2011 Nano Lett. 11 2407
|
[32] |
Yan Y, Zhou X, Jin H, Li C Z, Ke X, Van T G, Liu K, Yu D, Dressel M and Liao Z M 2015 Acs Nano 9 10244
|
[33] |
Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301
|
[34] |
Gao M, Zhang M, Niu W, Chen Y, Gu M, Wang H, Song F, Wang P, Yan S, Wang F, Wang X R, Wang X F, Xu Y and Zhang R 2017 Appl. Phys. Lett. 111 031906
|
[35] |
Wang X, Pan X, Gao M, Yu J, Jiang J, Zhang J, Zuo H, Zhang M, Wei Z, Niu W, Xia Z Wan X, Chen Y, Song F, Xu Y, Wang B, Wang G and Zhang R 2016 Adv. Electron. Mater. 2 1600228
|
[36] |
Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821
|
[37] |
Xiu F, He L, Wang Y, Cheng L, Chang L T, Lang M, Huang G, Kou X, Zhou Y, Jiang X, Chen Z, Zou J, Shailos A and Wang K 2011 Nat. Nanotech. 6 216
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|