Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 117202    DOI: 10.1088/1674-1056/26/11/117202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Biaxial strain-induced enhancement in the thermoelectric performance of monolayer WSe2

Wanhuizi Shen(沈婉慧子)1, Daifeng Zou(邹代峰)1,2, Guozheng Nie(聂国政)1, Ying Xu(许英)1
1. School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China;
2. Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Abstract  

The effects of biaxial strain on the electronic structure and thermoelectric properties of monolayer WSe2 have been investigated by using first-principles calculations and the semi-classical Boltzmann transport theory. The electronic band gap decreases under strain, and the band structure near the Fermi level of monolayer WSe2 is modified by the applied biaxial strain. Furthermore, the doping dependence of the thermoelectric properties of n-and p-doped monolayer WSe2 under biaxial strain is estimated. The obtained results show that the power factor of n-doped monolayer WSe2 can be increased by compressive strain while that of p-doping can be increased with tensile strain. Strain engineering thus provides a direct method to control the electronic and thermoelectric properties in these two-dimensional transition metal dichalcogenides materials.

Keywords:  monolayer WSe2      biaxial strain      thermoelectric properties      first-principles  
Received:  03 July 2017      Revised:  10 August 2017      Accepted manuscript online: 
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.80.Ga (Transition-metal compounds)  
  31.15.A- (Ab initio calculations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11627801) and the Research Foundation of Education Bureau of Hunan Province of China (Grant Nos. 15B083 and 17B090).

Corresponding Authors:  Daifeng Zou     E-mail:  daifengzou@gmail.com

Cite this article: 

Wanhuizi Shen(沈婉慧子), Daifeng Zou(邹代峰), Guozheng Nie(聂国政), Ying Xu(许英) Biaxial strain-induced enhancement in the thermoelectric performance of monolayer WSe2 2017 Chin. Phys. B 26 117202

[1] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[2] Liang W Y and Cundy S L 1969 Philos. Mag. 19 1031
[3] Coehoorn R, Haas C, Dijkstra J, Flipse C J F, de Groot R A and Wold A 1987 Phys. Rev. B 35 6195
[4] Benameur M M, Radisavljevic B, Heron J S, Sahoo S, Berger H and Kis A 2011 Nanotechnology 22 125706
[5] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nano. 6 147
[6] Li H, Yin Z, He Q, Huang X, Lu G, Fam D W H, Tok A Y, Zhang Q and Zhang H 2012 Small 8 63
[7] Johari P and Shenoy V B 2012 ACS Nano 6 5449
[8] Bhattacharyya S, Pandey T and Singh A K 2014 Nanotechnology 25 465701
[9] Amin B, Kaloni T P and Schwingenschlögl U 2014 RSC Adv. 4 34561
[10] Guo S D 2016 Comput. Mater. Sci. 123 8
[11] Kumar S and Schwingenschlögl U 2015 Chem. Mater. 27 1278
[12] Huang W, Da H and Liang G 2013 J. Appl. Phys. 113 104304
[13] Wickramaratne D, Zahid F and Lake R K 2014 J. Chem. Phys. 140 124710
[14] Huang W, Luo X, Gan C K, S Y Quek and Liang G 2014 Phys. Chem. Chem. Phys. 16 10866
[15] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727
[16] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
[17] Zhou W X and Chen K Q 2015 Sci. Rep. 5 15070
[18] Hinsche N F, Yavorsky B Y, Mertig I and Zahn P 2011 Phys. Rev. B 84 165412
[19] Zou D, Nie G, Li Y, Xu Y, Zheng H and Li J 2015 RSC Adv. 5 24908
[20] Zou D, Liu Y, Xie S, Lin J and Li J 2013 Chem. Phys. Lett. 586 159
[21] Pardo V, Botana A S and Baldomir D 2013 Phys. Rev. B 87 125148
[22] Zhang G and Zhang Y W 2015 Mech. Mater. 91 382
[23] Dimple, Nityasagar J and Abir De S 2017 J. Phys.:Condens. Matter 29 225501
[24] Chen K X, Wang X M, Mo D C and Lyu S S 2015 J. Phys. Chem. C 119 26706
[25] Lv H, Lu W, Shao D, Lu H and Sun Y 2016 J. Mater. Chem. C 4 4538
[26] Guo S D and Wang Y 2017 Semicond. Sci. Tech. 32 055004
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Blöchl P E 1994 Phys. Rev. B 50 17953
[30] Guo S D 2016 J. Mater. Chem. C 4 9366
[31] Guo S D and Wang J L 2016 Semicond. Sci. Tech. 31 095011
[32] Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V and Sofo J O 2003 Phys. Rev. B 68 125210
[33] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[34] Ong K P, Singh D J and Wu P 2011 Phys. Rev. B 83 115110
[35] Guo H H, Yang T, Tao P and Zhang Z D 2013 Chin. Phys. B 22 017201
[36] Kaur K and Kumar R 2016 Chin. Phys. B 25 056401
[37] Kaur K and Kumar R 2016 Chin. Phys. B 25 026402
[38] Peng H, Wang C L, Li J C, Zhang R Z, Wang H C and Sun Y 2011 Chin. Phys. B 20 046103
[39] Schutte W J, De Boer J L and Jellinek F 1987 J. Solid State Chem. 70 207
[40] Singh D J and Mazin I I 1997 Phys. Rev. B 56 R1650
[41] Lee M S, Poudeu F P and Mahanti S D 2011 Phys. Rev. B 83 085204
[42] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
[43] Zhao P, Kiriya D, Azcatl A, Zhang C, Tosun M, Liu Y S, Hettick M, Kang J S, McDonnell S, KC S, Guo J, Cho K, Wallace R M and Javey A 2014 ACS Nano 8 10808
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
No Suggested Reading articles found!