Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 117201    DOI: 10.1088/1674-1056/26/11/117201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Uncertainties of clock and shift operators for an electron in one-dimensional nonuniform lattice systems

Long-Yan Gong(巩龙延)1,2,3, You-Gen Ding(丁友根)2, Yong-Qiang Deng(邓永强)2
1. Department of Applied Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2. Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3. National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The clock operator U and shift operator V are higher-dimensional Pauli operators. Just recently, tighter uncertainty relations with respect to U and V were derived, and we apply them to study the electron localization properties in several typical one-dimensional nonuniform lattice systems. We find that uncertainties △ U2 are less than, equal to, and greater than uncertainties △ V2 for extended, critical, and localized states, respectively. The lower bound LB of the uncertainty relation is relatively large for extended states and small for localized states. Therefore, in combination with traditional quantities, for instance inverse participation ratio, these quantities can be as novel indexes to reflect Anderson localization.
Keywords:  uncertainties      Anderson localization      nonuniform lattice systems      mobility edge  
Received:  02 June 2017      Revised:  30 July 2017      Accepted manuscript online: 
PACS:  72.20.Ee (Mobility edges; hopping transport)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  71.23.An (Theories and models; localized states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475075 and 61170321).
Corresponding Authors:  Long-Yan Gong     E-mail:  lygong@njupt.edu.cn

Cite this article: 

Long-Yan Gong(巩龙延), You-Gen Ding(丁友根), Yong-Qiang Deng(邓永强) Uncertainties of clock and shift operators for an electron in one-dimensional nonuniform lattice systems 2017 Chin. Phys. B 26 117201

[1] Heisenberg W 1927 Z. Phys. 43 172
[2] Busch P, Heinonen T and Lahti P 2007 Phys. Rep. 452 155
[3] Oppenheim J and Wehner S 2010 Science 330 1072
[4] Deutsch D 1983 Phys. Rev. Lett. 50 631
[5] Sachdev S (Ed.) 1999 Quantum Phase Transitions (Cambridge:Cambridge University Press)
[6] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[7] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[8] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[9] Kennard E H 1927 Z. Phys. 44 326
[10] Robertson H P 1929 Phys. Rev. 34 163
[11] Bagchi S and Pati A K 2016 Phys. Rev. A 94 042104
[12] Schwinger J 1960 Proc. Natl. Acad. Sci. USA 46 570
[13] Sylvester J J 1909 The Collected Mathematics Papers of James Joseph Sylvester (Cambridge:Cambridge University Press) (Vol. Ⅲ)
[14] Massar S and Spindel P 2008 Phys. Rev. Lett. 100 190401
[15] Anderson P W 1958 Phys. Rev. 109 1492
[16] Abrahams E (Ed.) 2010 50 Years of Anderson Localization (Singapore:World Scientific)
[17] Zhu H J and Xiong S J 2010 Chin. Phys. B 19 037107
[18] Gong L Y and Tong P Q 2008 Chin. Phys. B 17 0674
[19] Liao J, Shi G, Liu N and Li Y Q 2016 Chin. Phys. B 25 117201
[20] Chou C and Ho C 2014 Chin. Phys. B 23 110302
[21] Das Sarma S, He S and Xie X C 1988 Phys. Rev. Lett. 61 2144
[22] Griniasty M and Fishman S 1988 Phys. Rev. Lett. 60 1334
[23] Thouless D J 1988 Phys. Rev. Lett. 61 2141
[24] Ganeshan S, Pixley J H and Das Sarma S 2015 Phys. Rev. Lett. 114 146601
[25] Dunlap D H, Wu H and Phillips P W 1990 Phys. Rev. Lett. 65 88
[26] Gangopadhyay S and Sen A K 1992 J. Phys.:Condens. Matter 4 9939
[27] Datta P K, Giri D, and Kundu K 1993 Phys. Rev. B 47 10727
[28] Kramer B and Machinnon A 1993 Rep. Prog. Phys. 56 1469
[29] Resta R 1998 Phys. Rev. Lett. 80 1800
[30] Gong L, Wei L, Zhao S and Cheng W 2012 Phys. Rev. E 86 061122
[31] Gong L, Xue B, Li W, Cheng W and Zhao S 2016 Phys. Rev. A 94 032125
[1] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[4] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[5] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[6] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[7] Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity
Jianjin Wang(汪剑津), Yong Zhang(张勇), and Daxing Xiong(熊大兴). Chin. Phys. B, 2020, 29(12): 120503.
[8] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[9] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[10] Analytical treatment of Anderson localization in a chain of trapped ions experiencing laser Bessel beams
Jun Wen(文军), Jian-Qi Zhang(张建奇), Lei-Lei Yan(闫磊磊), Mang Feng(冯芒). Chin. Phys. B, 2019, 28(1): 010306.
[11] Controlling of entropic uncertainty in open quantum system via proper placement of quantum register
Ying-Hua Ji(嵇英华), Qiang Ke(柯强), Ju-Ju Hu(胡菊菊). Chin. Phys. B, 2018, 27(10): 100302.
[12] Phase diagram of a family of one-dimensional nearest-neighbor tight-binding models with an exact mobility edge
Long-Yan Gong(巩龙延), Xiao-Xin Zhao(赵小新). Chin. Phys. B, 2017, 26(7): 077202.
[13] An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks
N Batra, B K Sahoo, S De. Chin. Phys. B, 2016, 25(11): 113703.
[14] Disordered quantum walks in two-dimensional lattices
Zhang Rong(张融), Xu Yun-Qiu(徐韵秋), Xue Peng(薛鹏). Chin. Phys. B, 2015, 24(1): 010303.
[15] Transport dynamics of an interacting binary Bose–Einstein condensate in an incommensurate optical lattice
Cui Guo-Dong (崔国栋), Sun Jian-Fang (孙剑芳), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(10): 100501.
No Suggested Reading articles found!