Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 106103    DOI: 10.1088/1674-1056/26/10/106103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Stability and mechanical properties of various Hf-H phases:A density-functional theory study

Wei Xiao(肖伟)1,2, Lu Sun(孙璐)1, Shu-Hui Huang(黄树晖)1, Jian-Wei Wang(王建伟)1, Lei Cheng(程磊)1, Li-Gen Wang(王立根)1
1. General Research Institute for Nonferrous Metals, Beijing 100088, China;
2. University of Science and Technology Beijing, Beijing 100083, China
Abstract  

We performe first-principles density functional theory calculations to investigate the stability and mechanical properties of various HfHx (0 ≤ x ≤ 1) phases. For pure Hf phases, the calculated results show that the HCP and FCC phases are mechanically stable, while the BCC phase is unstable at 0 K. Also, as for various HfHx phases, we find that H location and concentration could have a significant effect on their stability and mechanical properties. When 0 ≤ x ≤ 0.25, the HCP phases with H at (tetrahedral) T sites are energetically most stable among various phases. The FCC and BCC phases with H at T sites turn to be relatively more favorable than the HCP phase when H concentration is higher than 0.25. Furthermore, our calculated results indicate that the H solution in Hf can largely affect their mechanical properties such as the bulk moduli (B) and shear moduli (G).

Keywords:  first-principles      hafnium      hydrogen  
Received:  10 May 2017      Revised:  10 July 2017      Accepted manuscript online: 
PACS:  61.82.Bg (Metals and alloys)  
  62.20.-x (Mechanical properties of solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51401030 and 51504033).

Corresponding Authors:  Li-Gen Wang     E-mail:  lg_wang1@yahoo.com

Cite this article: 

Wei Xiao(肖伟), Lu Sun(孙璐), Shu-Hui Huang(黄树晖), Jian-Wei Wang(王建伟), Lei Cheng(程磊), Li-Gen Wang(王立根) Stability and mechanical properties of various Hf-H phases:A density-functional theory study 2017 Chin. Phys. B 26 106103

[1] Habashi F 2013 Hafnium, Physical and Chemical Properties (New York:Springer)
[2] Risovanyi V D, Klochkov E P and Varlashova E E 1996 At. Energy 81 764
[3] Ogiyanagi J, Chimi Y, Shimada S, Nakamura T and Abe K 2010 J. Nucl. Sci. Technol. 47 197
[4] Gottwald J, Majerb G, Petersonc D T and Barnesc R G 2003 J. Alloys Compd. 356-357 274
[5] Sidhu S S and Mcguire J C 1952 J. Appl. Phys. 23 1257
[6] Berant Z, et al. 1989 Hyperfine Interact. 52 383
[7] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[8] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[9] Blochl P E 1994 Phys. Rev. B 50 17953
[10] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[11] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[12] Glaser F W, Moskowitz D and Post B 1953 J. Met. 5 1119
[13] https://en.wikipedia.org/wiki/Hafnium
[14] Fisher E S and Renken C J 1964 Phys. Rev. 135 A482
[15] Romans P A, Paasche O G and Kato H 1965 J. Alloys Compd. 8 213
[16] Häglund J, Fernádez Guillermet A, Grimvall G and Körling M 1993 Phys. Rev. B 48 11685
[17] Westbrook J H and Fleischer R L 1995 Intermetallic compounds:principles practice, volume I:principles (John Wiley Sons)
[18] Predel B 1996 H-Hf (Hydrogen-Hafnium), Ga-Gd——Hf-Zr (Berlin, Heidelberg:Springer)
[19] Xie Y Q, Peng K and Yang X X 2001 J. Cent. South Univ. Thchnol. 8 83
[20] Wang F and Gong H R 2012 Int. J. Hydrogen Energy 37 12393
[21] Schlapbach L 1988 Hydrogen in intermetallic compounds I (Berlin, Heidelberg:Springer)
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[10] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[11] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[14] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[15] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
No Suggested Reading articles found!