Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 106104    DOI: 10.1088/1674-1056/26/10/106104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Simulations of guiding of low-energy ions through a single nanocapillary in insulating materials

Shi-Dong Liu(刘世东)1,2, Yong-Tao Zhao(赵永涛)2,3, Yu-Yu Wang(王瑜玉)2
1. Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, College of Physics and Engineering, Qufu Normal University, Qufu 273165, China;
2. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
3. School of Science, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  

Simulations of guiding of low-energy ions through a single nanocapillary in insulating polymers are reported. The nanocapillary has a diameter of 100 nm and a length of 10 μm. Different from previous work, in our simulations a hyperbolic function is used to describe the decay of the charges deposited on the capillary surface. The present simulations reproduce the self-organized charge-up process occurring in the capillary. It is shown that lower-energy ions undergo more oscillations to get guiding equilibrium than those of higher-energy ions, resulting in a longer charging time, which is in good agreement with previous experimental results. Moreover, the experimentally observed mass independence of ion guiding is proved in our simulations. In particular, it is found that the maximum of the repulsive field within the capillary is independent of the ion energy as well as the tilt angle. To counterbalance the increasing of the transversal energy caused by increasing the tilt angle or incident energy, the effective length of the repulsive field is expanded in a self-organizing manner.

Keywords:  ion transmission      capillary guiding      nanocapillary  
Received:  04 May 2017      Revised:  30 June 2017      Accepted manuscript online: 
PACS:  61.85.+p (Channeling phenomena (blocking, energy loss, etc.) ?)  
  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11275238, 11205225, and 11375034).

Corresponding Authors:  Yong-Tao Zhao, Yu-Yu Wang     E-mail:  zhaoyongtao@xjtu.edu.cn;wangyuyu@impcas.ac.cn

Cite this article: 

Shi-Dong Liu(刘世东), Yong-Tao Zhao(赵永涛), Yu-Yu Wang(王瑜玉) Simulations of guiding of low-energy ions through a single nanocapillary in insulating materials 2017 Chin. Phys. B 26 106104

[1] Ninomiya S, Yamazaki Y, Koike F, Masuda H, Azuma T, Komaki K, Kuroki K and Sekiguchi M 1997 Phys. Rev. Lett. 78 4557
[2] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A and Sulik B 2002 Phys. Rev. Lett. 88 133201
[3] Víkor Gy, Rajendra Kumar R T, Pesšić Z D, Stolterfoht N and Schuch R 2005 Nucl. Instrum. Methods Phys. Res. B 233 218
[4] Sahana M B, Skog P, Víkor Gy, Rajendra Kumar R T and Schuch R 2006 Phys. Rev. A 73 040901
[5] Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Iván I, Gáll F, Sulik B, Víkor Gy, Pálinkás J and Stolterfoht N 2006 Nanotechnology 17 3915
[6] Skog P, Zhang H Q and Schuch R 2008 Phys. Rev. Lett. 101 223202
[7] Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M and Hoekstra R 2009 Phys. Rev. A 79 022901
[8] Pokhil G P and Cherdyntsev V V 2013 Journal of Surface Investigation:X-ray, Synchrotron and Neutron Techniques 7 356
[9] Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C and Burgdörfer J 2005 Phys. Rev. A 72 062902
[10] Schiessl K, Palfinger W, Lemell C and Burgdörfer J 2005 Nucl. Instrum. Methods Phys. Res. B 232 228
[11] Stolterfoht N 2013 Phys. Rev. A 87 012902
[12] Stolterfoht N 2013 Phys. Rev. A 87 032901
[13] Li D H, Wang Y Y, Zhao Y T, Xiao G Q, Zhao D, Xu Z F and Li F L 2009 Nucl. Instrum. Methods Phys. Res. B 267 469
[14] Allen F I, Persaud A, Park S J, Minor A, Sakurai M, Schneider D H and Schenkel T 2006 Nucl. Instrum. Methods Phys. Res. B 244 323
[15] Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazakic Y, Hoshino M, Nebiki T and Narusawa T 2006 Appl. Phys. Lett. 89 163502
[16] Xue Y L, Yu D Y, Liu J L, Wu Y H, Zhang M W, Chen J, Wang W, Lu R C, Shao C J, Kang L, Li J Y, Cai X H and Stolterfoht N 2015 Nucl. Instrum. Methods Phys. Res. B 359 44
[17] Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M and Chen X M 2012 Phys. Rev. A 85 064901
[18] Chen L, Lü X, Jia J, Ji M, Zhou P, Sun G, Wang J, Chen Y, Xi F, Cui Y, Shao J, Qiu X, Guo Y and Chen X 2011 J. Phys. B:At. Mol. Opt. Phys. 44 045203
[19] Lü X Y, Chen L, Chen X M, Jia J J, Zhou P, Zhou C L, Qiu X Y, Shao J X, Cui Y, Yin Y Z, Wang H W and Ji M C 2011 Chin. Phys. B 20 013401
[20] Stolterfoht N, Hellhammer R, Sobocinski P, Pešića Z D, Bundesmann J, Sulik B, Shah M B, Dunn K, Pedregosa J and McCullough R W 2005 Nucl. Instrum. Methods Phys. Res. B 235 460
[21] Liu S D, Wang Y Y, Zhao Y T, Zhou X M, Cheng R, Lei Y, Sun Y B, Ren J R, Duan J L, Liu J, Xu H S and Xiao G Q 2015 Phys. Rev. A 91 012714
[22] Milosavljević A R, Víkor Gy, Pešić Z D, Kolarž P, Šević D and Marinković B P 2007 Phys. Rev. A 75 030901
[23] Xue Y, Yu D, Liu J, Zhang M, Yang B, Zhang Y and Cai X 2015 Appl. Phys. Lett. 107 254102
[24] Fürsatz M, Meissl W, Pleschko S, Gebeshuber I C, Stolterfoht N, Winter H P and Aumayr F 2007 J. Phys.:Conf. Ser. 58 319
[25] Stolterfoht N, Hellhammer R, Juhász Z, Sulik B, Bayer V, Trautmann C, Bodewits E, de Nijs A J, Dang H M and Hoekstra R 2009 Phys. Rev. A 79 042902
[26] Stolterfoht N, Hellhammer R, Bundesmann J and Fink D 2008 Phys. Rev. A 77 032905
[27] Rajta I, Nagy G U L, Bereczky R J and Tökési K 2015 Nucl. Instrum. Methods Phys. Res. B 354 328
[28] Wang G Y, Shao J X, Song Q, Mo D, Yang A X, Ma X, Zhou W, Cui Y, Li Y, Liu Z L and Chen X M 2015 Sci. Rep. 5 15169
[29] Liu S D, Zhao Y T, Wang Y Y, Stolterfoht N, Cheng R, Zhou X M, Xu H S and Xiao G Q 2015 Chin. Phys. B 24 086104
[30] Lemell C, Burgdörfer J and Aumayr F 2013 Prog. Surf. Sci. 88 237
[31] Stolterfoht N and Yamazaki Y 2016 Phys. Rep. 629 1
[32] Pokhil G P and Vokhmyanina K A 2008 Journal of Surface Investigation:X-ray, Synchrotron and Neutron Techniques 2 273
[33] Liesegang J, Senn B C and Smith E R 1995 J. Appl. Phys. 77 5782
[34] Liesegang J and Senn B C 1996 J. Appl. Phys. 80 6336
[35] Schiessl K, Lemell C, Tökési K and Burgdörfer J 2009 J. Phys.:Conf. Ser. 163 012081
[36] Schiessl K, Lemell C, Tökési K and Burgdörfer J 2009 J. Phys.:Conf. Ser. 194 012069
[37] Electrical Properties of Mylar (http://usa.dupontteijinfilms.com).
[38] Stolterfoht N, Hellhammer H, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Reitsma G and Hoekstra R 2013 Phys. Rev. A 88 032902
[39] Gill W D 1972 J. Appl. Phys. 43 5033
[40] Frenkel J 1938 Phys. Rev. 54 647
[41] John C Schug, Lilly A C, Jr and Lowitz D A 1970 Phys. Rev. B 1 4811
[42] Seanor D A 1982 Electrical Properties of Polymers (America:Academic Press)
[43] Stolterfoht N, Hellhammer R, Pešić Z D, Hoffmanna V, Bundesmanna J, Petrova A, Finka D and Sulik B 2004 Vacuum 73 31
[44] Hellhammer R, Sobocinski P, Pešić Z D, Bundesmann J, Fink D and Stolterfoht N 2005 Nucl. Instrum. Methods Phys. Res. B 232 235
[45] Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N and Yamazaki Y 2009 Phys. Rev. A 79 012711
[46] Stolterfoht N, Hellhammer R, Juhász Z, Sulik B, Bodewits E, Dang H M and Hoekstra R 2010 Phys. Rev. A 82 052902
[47] Hellhammer R, Bundesmann J, Fink D and Stolterfoht N 2007 Nucl. Instrum. Methods Phys. Res. B 258 159
[1] PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces
San-Jie Liu(刘三姐), Ying-Feng He(何荧峰), Hui-Yun Wei(卫会云), Peng Qiu(仇鹏), Yi-Meng Song(宋祎萌), Yun-Lai An(安运来), Abdul Rehman(阿布度-拉赫曼), Ming-Zeng Peng(彭铭曾), Xin-He Zheng(郑新和). Chin. Phys. B, 2019, 28(2): 026801.
[2] Quantitative HRTEM and its application in the study of oxide materials
Chun-Lin Jia(贾春林), Shao-Bo Mi(米少波), Lei Jin(金磊). Chin. Phys. B, 2018, 27(5): 056803.
[3] Effects of evacuation assistant's leading behavior on the evacuation efficiency: Information transmission approach
Wang Xiao-Lu (王晓璐), Guo Wei (郭玮), Zheng Xiao-Ping (郑小平). Chin. Phys. B, 2015, 24(7): 070504.
[4] Theoretical study of power amplification in tapered fiber with multi-seed parallel injection
Xiao Qi-Rong (肖起榕), Ren Hai-Cui (任海翠), Li Dan (李丹), Gong Ma-Li (巩马理), Yan Ping (闫平). Chin. Phys. B, 2013, 22(11): 114208.
[5] Microstructure and photocatalytic activity of titanium dioxide nanoparticles
Li Chun-Yan (李春艳), Wang Jiang-Bin (王江彬), Wang Yi-Qian (王乙潜). Chin. Phys. B, 2012, 21(9): 098102.
[6] Charge ordering modulations in Bi0.4Ca0.6MnO3 film with a thickness of 110 nm
Ding Yan-Hua (丁艳华), Wang Yi-Qian (王乙潜), Cai Rong-Sheng (蔡鎔声), Chen Yun-Zhong (陈允忠), Sun Ji-Rong (孙继荣 ). Chin. Phys. B, 2012, 21(8): 087502.
[7] Taming desynchronized bursting with delays in the Macaque cortical network
Wang Qing-Yun(王青云), Murks Aleksandra, Perc Matjavž, and Lu Qi-Shao(陆启韶) . Chin. Phys. B, 2011, 20(4): 040504.
[8] Guided transmission of oxygen ions through Al2O3 nanocapillaries
Chen Yi-Feng(陈益峰), Chen Xi-Meng(陈熙萌), Lou Feng-Jun(娄凤君), Xu Jin-Zhang(徐进章), Shao Jian-Xiong(邵剑雄), Sun Guang-Zhi(孙光智), Wang Jun(王俊), Xi Fa-Yuan(席发元), Yin Yong-Zhi(尹永智), Wang Xing-An(王兴安), Xu Jun-Kui(徐俊奎), Cui Ying(崔莹), and Ding Bao-Wei(丁宝卫). Chin. Phys. B, 2009, 18(7): 2739-2743.
[9] Experimental verification of Foreman dislocation model
Zhao Chun-Wang(赵春旺), Xing Yong-Ming(邢永明), and Bai Pu-Cun(白朴存). Chin. Phys. B, 2009, 18(6): 2464-2468.
[10] High-resolution transmission electron microscopy and bulk magnetometry study of LaFe11.5Si1.5 compound
Zou Jun-Ding(邹君鼎), Li Wei(李卫), and Shen Bao-Gen(沈保根). Chin. Phys. B, 2009, 18(10): 4366-4369.
[11] Study of superstructure II in multiferroic BiMnO3
Ge Bing-Hui(葛炳辉), Li Fang-Hua(李方华), Li Xue-Ming(李雪明), Wang Yu-Mei (王玉梅), Chi Zhen-Hua (迟振华), and Jin Chang-Qing (靳常青). Chin. Phys. B, 2008, 17(9): 3163-3169.
[12] The quantum Kirchhoff equation and quantum current and energy spectrum of a homogeneous mesoscopic dissipation transmission line
Cui Yuan-Shun(崔元顺). Chin. Phys. B, 2007, 16(10): 3093-3096.
[13] Nanoelectronic devices---resonant tunnelling diodes grown on InP substrates by molecular beam epitaxy with peak to valley current ratio of 17 at room temperature
Zhang Yang (张杨), Zeng Yi-Ping (曾一平), Ma Long (马龙), Wang Bao-Qiang (王宝强), Zhu Zhan-Ping (朱占平), Wang Liang-Chen (王良臣), Yang Fu-Hua (杨富华). Chin. Phys. B, 2006, 15(6): 1335-1338.
[14] Experimental realization of information transmission between not-directly-coupled spins on NMR quantum computers
Wei Da-Xiu (魏达秀), Luo Jun (罗军), Yang Xiao-Dong (杨晓冬), Sun Xian-Ping (孙献平), Zeng Xi-Zhi (曾锡之), Liu Mai-Li (刘买利), Ding Shang-Wu (丁尚武), Zhan Ming-Sheng (詹明生). Chin. Phys. B, 2004, 13(6): 817-823.
No Suggested Reading articles found!