Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 103302    DOI: 10.1088/1674-1056/26/10/103302
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Influence of the initial electronic state on minima of high-order harmonic spectrum radiated from hydrogen molecular ion

Hui-Fang Cui(崔会芳), Xiang-Yang Miao(苗向阳)
College of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
Abstract  We theoretically investigate the high-order harmonic generation of the one-dimensional hydrogen molecular ion at fixed intermediate internuclear distance, driven by a multicycle laser field. Our results show that the initial electronic state of the hydrogen molecular ion affects the modulation of the high-order harmonic spectrum, especially the positions of the minima. Based on the two-state model, the underlying physical mechanism of the minimum is analyzed and discussed. Further analysis shows that the different positions of the minima in the different initial electronic states can be understood via the different interferences of the two phase-adiabatic states at the ionization times.
Keywords:  the minima of the high-order harmonic spectrum      interference      phase-adiabatic states  
Received:  09 May 2017      Revised:  12 June 2017      Accepted manuscript online: 
PACS:  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.25.Hz (Interference)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404204) and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province, China.
Corresponding Authors:  Xiang-Yang Miao     E-mail:  sxxymiao@126.com

Cite this article: 

Hui-Fang Cui(崔会芳), Xiang-Yang Miao(苗向阳) Influence of the initial electronic state on minima of high-order harmonic spectrum radiated from hydrogen molecular ion 2017 Chin. Phys. B 26 103302

[1] Itatani J, Levesque J, Zeidler D, Niikura Hiromichi, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
[2] Le V H, Le A T, Xie R H and Lin C D 2007 Phys. Rev. A 76 013414
[3] Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S and Stagira S 2011 Nat. Phys. 7 822
[4] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972
[5] Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O and Dudovich N 2012 Nature 485 343
[6] Xia C L and Miao X Y 2016 J. At. Mol. Sci. 7 17
[7] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[8] Takemoto N and Becker A 2010 Phys. Rev. Lett. 105 203004
[9] Takemoto N and Becker A 2011 J. Chem. Phys. 134 074309
[10] Miller M R, Xia Y, Becker A and Jaroń-Becker A 2016 Optica 3 259
[11] Miller M R, Jaroń-Becker A and Becker A 2016 Mol. Phys. (published online Dec. 27)
[12] Takemoto N and Becker A 2011 Phys. Rev. A 84 023401
[13] Miao X Y and Zhang C P 2014 Phys. Rev. A 89 033410
[14] Miller M R, Jaron-Becker A and Becker A 2016 Phys. Rev. A 93 013406
[15] Kling M F, Siedschlag Ch, Verhoef A J, Khan J I, Schultze M, Uphues Th, Ni Y, Uiberacker M, Drescher M, Krausz F and Vrakking M J J 2006 Science 312 246
[16] Kremer M, Fischer B, Feuerstein B, Jesus Vitor L B de, Sharma V, Hofrichter C, Rudenko A, Thumm U, Schr? ter C D, Moshammer R and Ullrich J 2009 Phys. Rev. Lett. 103 213003
[17] Znakovskaya I, von den Hoff P, Marcus G, Zherebtsov S, Bergues B, Gu X, Deng Y, Vrakking M J J, Kienberger R, Krausz F, Vivie-Riedle R de and Kling M F 2012 Phys. Rev. Lett. 108 063002
[18] Singh K P, He F, Ranitovic P, Cao W, De S, Ray D, Chen S, Thumm U, Becker A, Murnane M M, Kapteyn H C, Litvinyuk I V and Cocke C L 2010 Phys. Rev. Lett. 104 023001
[19] Li L Q, Xu Y Y and Miao X Y 2016 J. At. Mol. Sci. 7 1
[20] Kamta G L and Bandrauk A D 2005 Phys. Rev. A 71 053407
[21] Kanai T, Minemoto S and Sakai H 2005 Nature 435 470
[22] Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C and Velotta R 2005 Phys. Rev. Lett. 95 153902
[23] Le A T, Tong X M and Lin C D 2006 Phys. Rev. A 73 041402
[24] Chen Y J and Liu J 2008 Phys. Rev. A 77 013410
[25] Kanai T, Minemoto S and Sakai H 2007 Phys. Rev. Lett. 98 053002
[26] Zhou X, Lock R, Li W, Wagner N, Murnane M M and Kapteyn H C 2008 Phys. Rev. Lett. 100 073902
[27] Ciappina M F, Chirilǎ C C and Lein M 2007 Phys. Rev. A 75 043405
[28] Baker S, Robinson J S, Lein M, Chirilǎ C C, Torres R, Bandulet H C, Comtois D, Kieffer J C, Villeneuve D M, Tisch J W G and Marangos J P 2008 Phys. Rev. Lett. 101 053901
[29] Telnov D A and Chu S I 2007 Phys. Rev. A 76 043412
[30] Wörner H J, Bertrand J B, Hockett P, Corkum P B and Villeneuve D M 2010 Phys. Rev. Lett. 104 233904
[31] Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903
[32] Li W, Zhou X B, Lock R, Patchkovskii S, Stolow A, Kapteyn H C and Murnane M M 2008 Science 322 1207
[33] McFarland B K, Farrell J P, Bucksbaum P H and Gühr M 2008 Science 322 1232
[34] He H X, Lu R F, Zhang P Y, Guo Y H, Han K L and He G Z 2011 Phys. Rev. A 84 033418
[35] Chao Y, He H X, Wang Y H, Shi Q, Zhang Y D and Lu R F 2014 J. Phys. B:At. Mol. Opt. Phys. 47 055601
[36] Seideman T, Ivanov M Y and Corkum P B 1995 Phys. Rev. Lett. 75 2819
[37] Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
[38] Miao X Y and Du H N 2013 Phys. Rev. A 87 053403
[39] Mulliken R S 1939 J. Chem. Phys. 7 20
[40] Kulander K C, Mies F H and Schafer K J 1996 Phys. Rev. A 53 2562
[41] Kawata I, Kono H and FujimuraY 1999 J. Chem. Phys. 110 11152
[42] He F, Becker A and Thumm U 2008 Phys. Rev. Lett. 101 213002
[1] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[2] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[3] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[4] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[5] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[6] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[7] Non-Rayleigh photon statistics of superbunching pseudothermal light
Chao-Qi Wei(卫超奇), Jian-Bin Liu(刘建彬), Xue-Xing Zhang(张学星), Rui Zhuang(庄睿), Yu Zhou(周宇), Hui Chen(陈辉), Yu-Chen He(贺雨晨), Huai-Bin Zheng(郑淮斌), and Zhuo Xu(徐卓). Chin. Phys. B, 2022, 31(2): 024209.
[8] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[9] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[10] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[11] Broad-band phase retrieval method for transient radial shearing interference using chirp Z transform technique
Fang Xue(薛芳), Ya-Xuan Duan(段亚轩), Xiao-Yi Chen(陈晓义), Ming Li(李铭), Suo-Chao Yuan(袁索超), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(8): 084209.
[12] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[13] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[14] Integrated superconducting circuit for qubit and resonator protection
Xiao-Pei Yang(杨晓沛), Zhi-Kun Han(韩志坤), Shu-Qing Song(宋树清), Wen Zheng(郑文), Dong Lan(兰栋), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 078403.
[15] Wave-particle duality relation with a quantum N-path beamsplitter
Dong-Yang Wang(王冬阳), Jun-Jie Wu(吴俊杰), Yi-Zhi Wang(王易之), Yong Liu(刘雍), An-Qi Huang(黄安琪), Chun-Lin Yu(于春霖), and Xue-Jun Yang(杨学军). Chin. Phys. B, 2021, 30(5): 050302.
No Suggested Reading articles found!