Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 100301    DOI: 10.1088/1674-1056/26/10/100301
GENERAL Prev   Next  

Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential

Ahmet Ta?, Ali Havare
Mersin University, Department of Physics, Mersin 33343, Turkey
Abstract  

In this study, we present the analytical solutions of bound states for the Schrödinger equation with the multiparameter potential containing the different types of physical potentials via the asymptotic iteration method by applying the Pekeris-type approximation to the centrifugal potential. For any n and l (states) quantum numbers, we derive the relation that gives the energy eigenvalues for the bound states numerically and the corresponding normalized eigenfunctions. We also plot some graphics in order to investigate effects of the multiparameter potential parameters on the energy eigenvalues. Furthermore, we compare our results with the ones obtained in previous works and it is seen that our numerical results are in good agreement with the literature.

Keywords:  multiparameter potential      Schrödinger equation      bound states      asymptotic iteration method  
Received:  19 May 2017      Revised:  30 June 2017      Accepted manuscript online: 
PACS:  03.65.Nk (Scattering theory)  
  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
  21.60.-n (Nuclear structure models and methods)  
Corresponding Authors:  Ahmet Taş     E-mail:  aahmet.tas@gmail.com

Cite this article: 

Ahmet Taş, Ali Havare Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential 2017 Chin. Phys. B 26 100301

[1] Wang J and Ye W C 2010 Chin. Phys. B 19 030401
[2] Hassan H, Hoda Y B and Lu L L 2012 Chin. Phys. Lett. 29 020303
[3] Taskin F and Kocak G 2010 Chin. Phys. B 19 090314
[4] Lu F L and Chen C Y 2010 Chin. Phys. B 19 100309
[5] Wei G F and Chen W L 2010 Chin. Phys. B 19 090308
[6] Falaye B J, Ikhdair S M, and Hamzavi M 2015 J. Theor. Appl. Phys. 9 151
[7] Xu C L and Zhang M C 2017 J. Korean Phys. Soc. 70 129
[8] Aydogdu O and Yanar H 2015 Int. J. Quantum Chem. 115 529
[9] Abdelmonem M S, Abdel-Hady A and Nasser I 2015 Int. J. Quantum Chem. 115
[10] Gao J and Zhang M C 2016 Chin. Phys. Lett. 33 010303
[11] Yuan Y, Lu F L, Sun D S and Chen C Y 2014 Commun. Theor. Phys. 62 315
[12] Ikot A N and Akpan I O 2012 Chin. Phys. Lett. 29 090302
[13] Ikhdair S M, Falaye B J and Hamzavi M 2013 Chin. Phys. Lett. 30 020305
[14] Wei G F and Chen W L 2014 Int. J. Quantum Chem. 114 1602
[15] Sun G H, Popov D, Camacho-Nieto O and Dong S H 2015 Chin. Phys. B 24 100303
[16] Yazarloo B H, Mehraban H and Hassanabadi H 2016 Chin. Phys. B 25 080302
[17] Pekeris C L 1946 Phys. Rev. 70 518
[18] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[19] Ikot A N, Obong H P, Owate I O, Onyeaju M C and Hassanabadi H 2015 Adv. High Energy Phys. 2015 632603
[20] Jia C S, Chen T and He S 2013 Phys. Lett. A 377 682
[21] Pe ñ a J J, Garc í a-Mart í nez J, Garc í a-Ravelo J and Morales J 2015 Int. J. Quantum Chem. 115 158
[22] Obong H P, Ikot A N, Owate I O and Hassanabadi H 2016 New Phys.:Sae Mulli 66 2
[23] Onate C A 2015 Chin. J. Phys. 53 b1-11
[24] Ikot A N, Hassanabadi H and Abbey T M 2015 Commun. Theor. Phys. 64 637
[25] Ikot A N, Hassanabadi H, Obong H P, Umoren Y C, Isonguyo C N and Yazarloo B H 2014 Chin. Phys. B 23 120303
[26] Zhang G D, Zhou W, Liu J Y, Zhang L H and Jia C S 2014 Chem. Phys. 439 79
[27] Hu X T, Zhang L H and Jia C S 2014 J. Mol. Spectroscopy 297 21
[28] Jia C S, Zhang L H, Hu X T, Tang H M and Liang G C 2015 J. Mol. Spectroscopy 311 69
[29] Onate C A and Ojonubah J O 2015 J. Theor. Appl. Phys. 1-6
[30] Alsadi K S 2015 Appl. Math. Inform. Sci. 9 1931
[31] Falaye B J, Oyewumi K J, Ikhdair S M and Hamzavi M 2014 Phys. Scr. 89 115204
[32] Tas A, Alpdogan S and Havare A 2014 Adv. High Energy Phys. 2014
[33] Alpdogan S, Aydogdu O, and Havare A 2013 J. Phys. A:Math. Theor. 46 015301
[34] Sol-Mesa D, Quesne C and Smirnov Y F 1998 J. Phys. A:Math. Gen. 31 321
[35] Simsek M and Yalcin Z 1994 J. Math. Chem. 16 211
[36] Durmus A 2011 J. Phys. A:Math. Theor. 44 155205
[37] Manning M F and Rosen N 1933 Phys. Rev. 44 951
[38] Hulthen L 1942 Ark. Mat. Astron. Fys. A 28 5
[39] Eckart C 1930 Phys. Rev. 35 1303
[40] Rosen M and Morse P M 1932 Phys. Rev. 42 210
[41] Woods D R and Saxon D S 1954 Phys. Rev. 95 577
[42] Morse P M 1929 Phys. Rev. 34 57
[43] Kratzer A 1920 Zeitschrift fur Physik A:Hadrons and Nuclei 3 289
[44] Yanar H, Havare A and Sogut K 2014 Adv. High Energy Phys. 2014
[45] Hamzavi M, Movahedi M, Thylwe K E and Rajabi A A 2012 Chin. Phys. Lett. 29 080302
[46] Ciftci H, Hall R L and Saad N 2003 J. Phys. A:Math. Gen. 36 11807
[47] Ciftci H, Hall R L and Saad N 2005 J. Phys. A:Math. Gen. 38 1147
[48] Yanar H and Havare A 2015 Adv. High Energy Phys. 2015
[49] Aydogdu O and Sever R 2010 Eur. Phys. J. A 43 73
[50] Ovando G, Pe ñ a J J and Morales J 2016 Theor. Chem. Acc. 35 1
[51] Falaye B J, Oyewumi K J, Ibrahim T T, Punyasena M A and Onate C A 2013 Can. J. Phys. 91 98
[52] Lucha W and Schöberl F F 1999 Int. J. Mod. Phys. C 10 607
[53] Qiang W C, Li K and Chen W L 2009 J. Phys. A:Math. Theor. 42 205306
[54] Ikhdair S M 2011 arXiv preprint arXiv:1110.3153
[55] Bayrak O, Kocak G and Boztosun I 2006 J. Phys. A:Math. Gen. 39 11521
[56] Ma Z Q and Xu B W 2005 Europhys. Lett. 69 685
[57] Gonul B, Ozer O, Cancelik Y and Kocak M 2000 Phys. Lett. A 275 238
[58] Varshni Y P 1990 Phys. Rev. A 41 4682
[59] Falaye B J 2012 Central Eur. J. Phys. 10 960
[60] Dong S H, Qiang W C, Sun G H and Bezerra V B 2007 J. Phys. A:Math. Theor. 40 10535
[61] Jia C S, Diao Y F, Liu X J, Wang P Q, Liu J Y and Zhang G D 2012 J. Chem. Phys. 137 014101
[62] Zhang G D, Liu J Y, Zhang L H, Zhou W and Jia C S 2012 Phys. Rev. A 86 062510
[63] Wang P Q, Zhang L H, Jia C S and Liu J Y 2012 J. Mol. Spectroscopy 274 5
[64] Yanar H, Aydo ǧ du O and Salti M 2016 Mol. Phys. 114 3134
[65] Jia C S, Zhang L H and Peng X L 2017 Int. J. Quantum Chem. 117 14
[66] Jia C S and Jia Y 2017 Eur. Phys. J. D 71 3
[67] Onate C A, Onyeaju M C, Ikot A N, Idiodi J O A and Ojonubah J O 2017 J. Korean Phys. Soc. 70 339
[68] Song X Q, Wang C W and Jia C S 2017 Chem. Phys. Lett. 673 50
[69] Onyeaju M C, Idiodi J O A, Ikot A N, Solaimani M and Hassanabadi H 2016 Few-Body Systems 57 793
[70] Khordad R and Mirhosseini B 2014 Opt. Spectroscopy 117 434
[71] Xiao B, Guo K, Mou S and Zhang Z 2014 Superlattices and Microstructures 69 122
[72] Khordad R and Mirhosseini B 2015 Pramana 85 723
[73] Jia C S, Zhang L H and Wang C W 2017 Chem. Phys. Lett. 667 211
[74] Song X Q, Wang C W and Jia C S 2017 Chem. Phys. Lett. 673 50
[75] Jia C S, Wang C W, Zhang L H, Peng X L, Zeng R and You X T 2017 Chem. Phys. Lett. 676 150
[1] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[2] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[3] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[4] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[5] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[6] Detection of spin current through a quantum dot with Majorana bound states
Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧). Chin. Phys. B, 2021, 30(10): 100302.
[7] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[8] Bound in continuum states and induced transparency in mesoscopic demultiplexer with two outputs
Z Labdouti, T Mrabti, A Mouadili, E H El Boudouti, F Fethi, and B Djafari-Rouhani. Chin. Phys. B, 2020, 29(12): 127301.
[9] Efficient solver for time-dependent Schrödinger equation with interaction between atoms and strong laser field
Sheng-Peng Zhou(周胜鹏), Ai-Hua Liu(刘爱华), Fang Liu(刘芳), Chun-Cheng Wang(王春成), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(8): 083101.
[10] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[11] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[12] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[13] Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(12): 126303.
[14] Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields
M Eshghi, H Mehraban, S M Ikhdair. Chin. Phys. B, 2017, 26(6): 060302.
[15] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
Mohsen Yarmohammadi, Malek Zareyan. Chin. Phys. B, 2016, 25(6): 068105.
No Suggested Reading articles found!