|
|
Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential |
Ahmet Ta?, Ali Havare |
Mersin University, Department of Physics, Mersin 33343, Turkey |
|
|
Abstract In this study, we present the analytical solutions of bound states for the Schrödinger equation with the multiparameter potential containing the different types of physical potentials via the asymptotic iteration method by applying the Pekeris-type approximation to the centrifugal potential. For any n and l (states) quantum numbers, we derive the relation that gives the energy eigenvalues for the bound states numerically and the corresponding normalized eigenfunctions. We also plot some graphics in order to investigate effects of the multiparameter potential parameters on the energy eigenvalues. Furthermore, we compare our results with the ones obtained in previous works and it is seen that our numerical results are in good agreement with the literature.
|
Received: 19 May 2017
Revised: 30 June 2017
Accepted manuscript online:
|
PACS:
|
03.65.Nk
|
(Scattering theory)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
02.30.Gp
|
(Special functions)
|
|
21.60.-n
|
(Nuclear structure models and methods)
|
|
Corresponding Authors:
Ahmet Taş
E-mail: aahmet.tas@gmail.com
|
Cite this article:
Ahmet Taş, Ali Havare Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential 2017 Chin. Phys. B 26 100301
|
[1] |
Wang J and Ye W C 2010 Chin. Phys. B 19 030401
|
[2] |
Hassan H, Hoda Y B and Lu L L 2012 Chin. Phys. Lett. 29 020303
|
[3] |
Taskin F and Kocak G 2010 Chin. Phys. B 19 090314
|
[4] |
Lu F L and Chen C Y 2010 Chin. Phys. B 19 100309
|
[5] |
Wei G F and Chen W L 2010 Chin. Phys. B 19 090308
|
[6] |
Falaye B J, Ikhdair S M, and Hamzavi M 2015 J. Theor. Appl. Phys. 9 151
|
[7] |
Xu C L and Zhang M C 2017 J. Korean Phys. Soc. 70 129
|
[8] |
Aydogdu O and Yanar H 2015 Int. J. Quantum Chem. 115 529
|
[9] |
Abdelmonem M S, Abdel-Hady A and Nasser I 2015 Int. J. Quantum Chem. 115
|
[10] |
Gao J and Zhang M C 2016 Chin. Phys. Lett. 33 010303
|
[11] |
Yuan Y, Lu F L, Sun D S and Chen C Y 2014 Commun. Theor. Phys. 62 315
|
[12] |
Ikot A N and Akpan I O 2012 Chin. Phys. Lett. 29 090302
|
[13] |
Ikhdair S M, Falaye B J and Hamzavi M 2013 Chin. Phys. Lett. 30 020305
|
[14] |
Wei G F and Chen W L 2014 Int. J. Quantum Chem. 114 1602
|
[15] |
Sun G H, Popov D, Camacho-Nieto O and Dong S H 2015 Chin. Phys. B 24 100303
|
[16] |
Yazarloo B H, Mehraban H and Hassanabadi H 2016 Chin. Phys. B 25 080302
|
[17] |
Pekeris C L 1946 Phys. Rev. 70 518
|
[18] |
Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
|
[19] |
Ikot A N, Obong H P, Owate I O, Onyeaju M C and Hassanabadi H 2015 Adv. High Energy Phys. 2015 632603
|
[20] |
Jia C S, Chen T and He S 2013 Phys. Lett. A 377 682
|
[21] |
Pe ñ a J J, Garc í a-Mart í nez J, Garc í a-Ravelo J and Morales J 2015 Int. J. Quantum Chem. 115 158
|
[22] |
Obong H P, Ikot A N, Owate I O and Hassanabadi H 2016 New Phys.:Sae Mulli 66 2
|
[23] |
Onate C A 2015 Chin. J. Phys. 53 b1-11
|
[24] |
Ikot A N, Hassanabadi H and Abbey T M 2015 Commun. Theor. Phys. 64 637
|
[25] |
Ikot A N, Hassanabadi H, Obong H P, Umoren Y C, Isonguyo C N and Yazarloo B H 2014 Chin. Phys. B 23 120303
|
[26] |
Zhang G D, Zhou W, Liu J Y, Zhang L H and Jia C S 2014 Chem. Phys. 439 79
|
[27] |
Hu X T, Zhang L H and Jia C S 2014 J. Mol. Spectroscopy 297 21
|
[28] |
Jia C S, Zhang L H, Hu X T, Tang H M and Liang G C 2015 J. Mol. Spectroscopy 311 69
|
[29] |
Onate C A and Ojonubah J O 2015 J. Theor. Appl. Phys. 1-6
|
[30] |
Alsadi K S 2015 Appl. Math. Inform. Sci. 9 1931
|
[31] |
Falaye B J, Oyewumi K J, Ikhdair S M and Hamzavi M 2014 Phys. Scr. 89 115204
|
[32] |
Tas A, Alpdogan S and Havare A 2014 Adv. High Energy Phys. 2014
|
[33] |
Alpdogan S, Aydogdu O, and Havare A 2013 J. Phys. A:Math. Theor. 46 015301
|
[34] |
Sol-Mesa D, Quesne C and Smirnov Y F 1998 J. Phys. A:Math. Gen. 31 321
|
[35] |
Simsek M and Yalcin Z 1994 J. Math. Chem. 16 211
|
[36] |
Durmus A 2011 J. Phys. A:Math. Theor. 44 155205
|
[37] |
Manning M F and Rosen N 1933 Phys. Rev. 44 951
|
[38] |
Hulthen L 1942 Ark. Mat. Astron. Fys. A 28 5
|
[39] |
Eckart C 1930 Phys. Rev. 35 1303
|
[40] |
Rosen M and Morse P M 1932 Phys. Rev. 42 210
|
[41] |
Woods D R and Saxon D S 1954 Phys. Rev. 95 577
|
[42] |
Morse P M 1929 Phys. Rev. 34 57
|
[43] |
Kratzer A 1920 Zeitschrift fur Physik A:Hadrons and Nuclei 3 289
|
[44] |
Yanar H, Havare A and Sogut K 2014 Adv. High Energy Phys. 2014
|
[45] |
Hamzavi M, Movahedi M, Thylwe K E and Rajabi A A 2012 Chin. Phys. Lett. 29 080302
|
[46] |
Ciftci H, Hall R L and Saad N 2003 J. Phys. A:Math. Gen. 36 11807
|
[47] |
Ciftci H, Hall R L and Saad N 2005 J. Phys. A:Math. Gen. 38 1147
|
[48] |
Yanar H and Havare A 2015 Adv. High Energy Phys. 2015
|
[49] |
Aydogdu O and Sever R 2010 Eur. Phys. J. A 43 73
|
[50] |
Ovando G, Pe ñ a J J and Morales J 2016 Theor. Chem. Acc. 35 1
|
[51] |
Falaye B J, Oyewumi K J, Ibrahim T T, Punyasena M A and Onate C A 2013 Can. J. Phys. 91 98
|
[52] |
Lucha W and Schöberl F F 1999 Int. J. Mod. Phys. C 10 607
|
[53] |
Qiang W C, Li K and Chen W L 2009 J. Phys. A:Math. Theor. 42 205306
|
[54] |
Ikhdair S M 2011 arXiv preprint arXiv:1110.3153
|
[55] |
Bayrak O, Kocak G and Boztosun I 2006 J. Phys. A:Math. Gen. 39 11521
|
[56] |
Ma Z Q and Xu B W 2005 Europhys. Lett. 69 685
|
[57] |
Gonul B, Ozer O, Cancelik Y and Kocak M 2000 Phys. Lett. A 275 238
|
[58] |
Varshni Y P 1990 Phys. Rev. A 41 4682
|
[59] |
Falaye B J 2012 Central Eur. J. Phys. 10 960
|
[60] |
Dong S H, Qiang W C, Sun G H and Bezerra V B 2007 J. Phys. A:Math. Theor. 40 10535
|
[61] |
Jia C S, Diao Y F, Liu X J, Wang P Q, Liu J Y and Zhang G D 2012 J. Chem. Phys. 137 014101
|
[62] |
Zhang G D, Liu J Y, Zhang L H, Zhou W and Jia C S 2012 Phys. Rev. A 86 062510
|
[63] |
Wang P Q, Zhang L H, Jia C S and Liu J Y 2012 J. Mol. Spectroscopy 274 5
|
[64] |
Yanar H, Aydo ǧ du O and Salti M 2016 Mol. Phys. 114 3134
|
[65] |
Jia C S, Zhang L H and Peng X L 2017 Int. J. Quantum Chem. 117 14
|
[66] |
Jia C S and Jia Y 2017 Eur. Phys. J. D 71 3
|
[67] |
Onate C A, Onyeaju M C, Ikot A N, Idiodi J O A and Ojonubah J O 2017 J. Korean Phys. Soc. 70 339
|
[68] |
Song X Q, Wang C W and Jia C S 2017 Chem. Phys. Lett. 673 50
|
[69] |
Onyeaju M C, Idiodi J O A, Ikot A N, Solaimani M and Hassanabadi H 2016 Few-Body Systems 57 793
|
[70] |
Khordad R and Mirhosseini B 2014 Opt. Spectroscopy 117 434
|
[71] |
Xiao B, Guo K, Mou S and Zhang Z 2014 Superlattices and Microstructures 69 122
|
[72] |
Khordad R and Mirhosseini B 2015 Pramana 85 723
|
[73] |
Jia C S, Zhang L H and Wang C W 2017 Chem. Phys. Lett. 667 211
|
[74] |
Song X Q, Wang C W and Jia C S 2017 Chem. Phys. Lett. 673 50
|
[75] |
Jia C S, Wang C W, Zhang L H, Peng X L, Zeng R and You X T 2017 Chem. Phys. Lett. 676 150
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|