Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060302    DOI: 10.1088/1674-1056/26/6/060302
GENERAL Prev   Next  

Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields

M Eshghi1, H Mehraban2, S M Ikhdair3,4
1 Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran;
2 Faculty of Physics, Semnan University, Semnan, Iran;
3 Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine;
4 Department of Electrical Engineering, Near East University, Nicosia, Northern Cyprus, Mersin 10, Turkey

We solve the Schrödinger equation with a position-dependent mass (PDM) charged particle interacted via the superposition of the Morse-plus-Coulomb potentials and is under the influence of external magnetic and Aharonov-Bohm (AB) flux fields. The nonrelativistic bound state energies together with their wave functions are calculated for two spatially-dependent mass distribution functions. We also study the thermal quantities of such a system. Further, the canonical formalism is used to compute various thermodynamic variables for second choosing mass by using the Gibbs formalism. We give plots for energy states as a function of various physical parameters. The behavior of the internal energy, specific heat, and entropy as functions of temperature and mass density parameter in the inverse-square mass case for different values of magnetic field are shown.

Keywords:  Schrödinger equation      Morse-plus-Coulomb potentials      position-dependent mass distribution functions      perpendicular magnetic and Aharonov-Bohm flux fields  
Received:  02 January 2017      Revised:  26 February 2017      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Ca (Formalism)  
  03.65.Db (Functional analytical methods)  
Corresponding Authors:  M Eshghi     E-mail:,

Cite this article: 

M Eshghi, H Mehraban, S M Ikhdair Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields 2017 Chin. Phys. B 26 060302

[1] Flugge S 1974 Practical Quantum Mechanics (Berlin, Heidelberg, New York: Springer-Verlag)
[2] Eshghi M and Mehraban H 2016 Math. Meth. Aappl. Sci. 39 1599
[3] Dong S H and Lozada-Cassou M 2004 Phys. Lett. A 330 168
[4] Jia C S, Li Y, Sun Y and Sun L T 2003 Phys. Lett. A 311 115
[5] Aydogdu O and Sever R 2010 Ann. Phys. 325 373
[6] Chen G 2004 Phys. Lett. A 326 55
[7] Ikhdair S M and Sever R 2007 J. Mol. Struc. THEOCHEM 806 155
[8] Arda A and Sever R 2012 Commun. Theor. Phys. 58 27
[9] Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A 374 704
[10] Kestner N R and Sinanoglu O 1962 Phys. Rev. 128 2687
[11] Stahlhofen A A 2004 J. Phys. A: Math. Gen. 37 10129
[12] Karwowski J and Witek H A 2014 Theor. Chem. Acc. 133 1494
[13] Greiner W 2001 Quantum Mechanics: an Introduction (Berlin: Spronger-Verlag)
[14] Dong S H 2007 Factorization Method in Quantum Mechanics (Berlin: Springer)
[15] Slavyanov S Y, Lay W and Seeger A 2000 Special Functions: A Unifield Theory Based on Singularities (New-York: Oxford University Press)
[16] Ronveaux A 1995 Heun's Differential Equations (Oxford: Oxford University Press)
[17] Eshghi M and Mehraban H 2017 C. R. Physique 18 47
[18] Eshghi M, Mehraban H and Ikhdair S M 2016 Eur. Phys. J. A 52 201
[19] Ikhdair S M, Falaye B J and Hamzavi M 2015 Ann. Phys. 353 282
[20] Sharifi Z, Tajic F, Hamzavi M and Ikhdair S M 2015 Z. Naturf. A 70 499
[21] Slater J C 1949 Phys. Rev. 76 1592
[22] Ikhdair S M 2009 Chem. Phys. 361 9
[23] Ikhdair S M and Sever R 2010 Appl. Math. Comp. 216 545
[24] Rajbongshi H and Nimai Singh N 2013 J. Mod. Phys. 4 1540
[25] Arda A and Sever R 2009 Chin. Phys. Lett. 26 090305
[26] Arda A and Sever R 2010 Chin. Phys. Lett. 27 010106
[27] Falaye B J, Serrano F A and Dong S H 2016 Phys. Lett. A 380 267
[28] Jia C S, Wang P Q, Liu J Y and He S 2008 Int. J. Theor. Phys. 47 2513
[29] Eshghi M, Hamzavi M and Ikhdair S M 2013 Chin. Phys. B 22 030303
[30] Eshghi M and Mehraban H 2012 Few-Body Syst. 52 41
[31] Eshghi M and Abdi M R 2013 Chin. Phys. C 37 053103
[32] Panahi H and Bakhshi Z 2011 J. Phys. A: Math. Theor. 44 175304
[33] Mustafa O 2008 Int. J. Theor. Phys. 47 1300
[34] Mustafa O and Habib Mazaherimousavi S 2009 Phys. Lett. A 373 325
[35] Chnha M S and Christiansen H R 2013 Commun. Theor. Phys. 60 642
[36] Bahar M K and Yasuk F 2014 Can. J. Phys. 92 1565
[37] Ikhdair S M, Hamzavi M and Sever R 2012 Physica B 407 4523
[38] Bonatsos D, Georgoudis P E, Minkov N, Petrellis D and Quesne C 2013 Phys. Rev. C 88 034316
[39] Yu J, Dong S H and Sun G H 2004 Phys. Lett. A 322 290
[40] Dong S H and Lozada-Cassou M 2005 Phys. Lett. A 337 313
[41] Jiang L, Yi L Z and Jia C S 2005 Phys. Lett. A 345 279
[42] Jia C S, Li X P and Zhang L H 2012 Few-Body Syst. 52 11
[43] Jia C S and de Souza Dutra A 2008 Ann. Phys. 323 566
[44] Bonatsos D, Georgoudis P E, Lenis D, Minkov N and Quesne C 2010 Phys. Lett. B 683 264
[45] Khordad R 2010 Sol. Stat. Sci. 12 1253
[46] Yuce C 2006 Phys. Rev. A 74 062106
[47] Ustoglu Unal V, Aksahin E and Aytekin O 2013 Physica E 47 103
[48] Jia C S, Zhang L H and Wang C W 2017 Chem. Phys. Lett. 667 211
[49] Strekalov M L 2007 Chem. Phys. Lett. 439 209
[50] Toutounji M 2011 Int. J. Quantum Chem. 111 1885
[51] Alhaidari A D 2004 Phys. Lett. A 72 322
[52] Arias de Saavedra F, Boronat J, Polls A and Fabrocini A 1994 Phys. Rev. B 50 4248
[53] Li Y M, Lu H M, Voskoboynikov O, Lee C P and Sze S M 2003 Surf. Sci. 811 532
[54] Eshghi M and Mehraban H 2017 Eur. Phys. J Plus 132 121
[55] Ju G X, Cai C Y, Xiang Y and Ren Z Z 2007 Commun. Theor. Phys. 47 1001
[56] Eshghi M, hamzavi M and Ikhdair S M 2013 Chin. Phys. B 22 030303
[57] Jia C S and de Souza Dutra A 2006 J. Phys. A: Math. Gen. 39 11877
[58] Xu Y, Su H and Jia C S 2008 J. Phys. A: Math. Theor. 41 255302
[59] Eshghi M and Ikhdair S M 2014 Chin. Phys. B 23 120304
[60] Bagchi B, Gorain P, Quesne C and Roychoudhury R 2004 Mod. Phys. Lett. A 19 2765
[61] Bordag M and Khusnutdinov N 1996 Class. Quantum Grav. 13 L41
[62] Kristensson G 2010 Second Order Differential Equations, Special Functions and Their Classification (New York: Springer)
[63] Zhang A P, Shi P, Ling Y W and Hua Z W 2011 Acta Phys. Pol. A 120 987
[64] Patria R K 1972 Statistical Mechanics (Oxford: Pergamom Press)
[65] Abramowitz M and Astegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)
[1] Efficient solver for time-dependent Schrödinger equation with interaction between atoms and strong laser field
Sheng-Peng Zhou(周胜鹏), Ai-Hua Liu(刘爱华), Fang Liu(刘芳), Chun-Cheng Wang(王春成), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(8): 083101.
[2] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[3] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[4] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[5] Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(12): 126303.
[6] Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential
Ahmet Taş, Ali Havare. Chin. Phys. B, 2017, 26(10): 100301.
[7] Dynamics of cubic-quintic nonlinear Schrödinger equation with different parameters
Wei Hua(花巍), Xue-Shen Liu(刘学深), Shi-Xing Liu(刘世兴). Chin. Phys. B, 2016, 25(5): 050202.
[8] Nonautonomous solitary-wave solutions of the generalized nonautonomous cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients
He Jun-Rong (何俊荣), Li Hua-Mei (李画眉). Chin. Phys. B, 2013, 22(4): 040310.
[9] Multisymplectic implicit and explicit methods for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Yang Bin (杨斌), Liang Hua (梁华). Chin. Phys. B, 2013, 22(3): 030209.
[10] A new finite difference scheme for a dissipative cubic nonlinear Schr"odinger equation
Zhang Rong-Pei(张荣培),Yu Xi-Jun(蔚喜军),and Zhao Guo-Zhong(赵国忠). Chin. Phys. B, 2011, 20(3): 030204.
[11] Approximate solutions of Schrödinger equation for Eckart potential with centrifugal term
F. Tacskin and G. Koccak. Chin. Phys. B, 2010, 19(9): 090314.
[12] Bound states of the Schrödinger equation for the Pöschl–Teller double-ring-shaped Coulomb potential
Lu Fa-Lin(陆法林) and Chen Chang-Yuan(陈昌远). Chin. Phys. B, 2010, 19(10): 100309.
No Suggested Reading articles found!