Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 100302    DOI: 10.1088/1674-1056/26/10/100302
GENERAL Prev   Next  

Experimental simulation of violation of the Wright inequality by coherent light

Feng Zhu(朱锋), Wei Zhang(张巍), Yidong Huang(黄翊东)
Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Abstract  In this paper, we investigate the simulation of violation of the Wright inequality by the classical optical experiment theoretically and experimentally. The feasibility of the simulation is demonstrated by theoretical analysis based on descriptions of the classical electrodynamics and quantum mechanics, respectively. Then, the simulation of violation of the Wright inequality is realized experimentally. The setup is based on a laser source, free-space optical devices and power meters. The experimental result violates the noncontextuality hidden variable bound, agreeing with the quantum bound. This method can be extended to other types of noncontextuality inequalities.
Keywords:  quantum optics      polarization      quantum information and processing  
Received:  21 January 2017      Revised:  23 June 2017      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2011CBA00303 and 2013CB328700) and Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology (TNList).
Corresponding Authors:  Wei Zhang     E-mail:  zwei@tsinghua.edu.cn

Cite this article: 

Feng Zhu(朱锋), Wei Zhang(张巍), Yidong Huang(黄翊东) Experimental simulation of violation of the Wright inequality by coherent light 2017 Chin. Phys. B 26 100302

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Bell J S 1964 Physics 1 195
[3] Specker E P 1960 Dialectica 14 239
[4] Kochen S and Specker E P 1967 J. Math. Mech. 17 59
[5] Bell J S 1966 Rev. Mod. Phys. 38 447
[6] Fine A 1982 Phys. Rev. Lett. 48 291
[7] Liang Y C, Spekkens R W and Wiseman H M 2011 Phys. Rep. 506 1
[8] Klyachko A A, Can M A, Binicioǧlu S and Shumovsky A S 2008 Phys. Rev. Lett. 101 020403
[9] Clauser J F, Horne M A, Shimony A and Holt R A 1949 Phys. Rev. Lett. 23 880
[10] Wright R 1978 Mathematical Foundations of Quantum Mechanics (San Diego:Academic Press) p. 255
[11] Hasegawa Y, Loidl R, Badurek G, Baron M and Rauch H 2006 Phys. Rev. Lett. 97 230401
[12] Moussa O, Ryan C A, Cory D G and Laflamme R 2010 Phys. Rev. Lett. 104 160501
[13] Zhang X, Um M, Zhang J, An S, Wang Y, Deng D L, Shen C, Duan L M and Kim K 2013 Phys. Rev. Lett. 110 070401
[14] Kirchmair G, Zähringer F, Gerritsma R, Kleinmann M, Gühne O, Cabello A, Blatt R and Roos C F 2003 Nature 460 494
[15] Lapkiewicz R, Li P, Schaeff C, Langford N, Ramelow S, Wieśiak M and Zeilinger A 2011 Nature 474 490
[16] Amselem E, R å dmark M, Bourennane M and Cabello A 2009 Phys. Rev. Lett. 103 160405
[17] Amselem E, Danielsen L E, López-Tarrida A J, Portillo J R, Bourennane M and Cabello A 2012 Phys. Rev. Lett. 108 200405
[18] Howard M, Wallman J, Veitch V and Emerson J 2014 Nature 510 351
[19] Raussendorf R 2013 Phys. Rev. A 88 022322
[20] Hoban M J, Campbell E T, Loukopoulos K and Browne D E 2011 New J. Phys. 13 023014
[21] Spekkens R W, Buzacott D H, Keehn A J, Toner B and Pryde G J 2009 Phys. Rev. Lett. 102 010401
[22] Pusey M F 2014 Phys. Rev. Lett. 113 200401
[23] Qian X F, Littile B, Howell J C and Eberly J H 2015 Optica 2 611
[24] Kagalwala K H, Di Giuseppe G, Abouraddy A F and Saleh B E A 2012 Nat. Photonics 7 72
[25] De Zela F 2007 Phys. Rev. A 76 042119
[26] Töppel F, Aiello A, Marquardt C, Giacobino E and Leuchs G 2014 New J. Phys. 16 073019
[27] Qian X F and Eberly J H 2011 Opt. Lett. 36 4110-2
[28] Mohammad S, Rafsanjani H, Mirhosseini M, Magaña-Loaiza O S and Boyd R W 2015 Phys. Rev. A 92 023827
[29] Sun Y, Song X, Qin H, Zhang X, Yang Z and Zhang X Sci. Rep. 5 9175
[30] Borges C. V. S, Hor-Meyll M, Huguenin J A O and Khoury A Z 2010 Phys. Rev. A 82 033833
[31] Spreeuw R J C 1998 Found. Phys. 28 361
[32] Frustaglia D, Baltanas J P, Velazquez-Ahumada M C, Fernandez-Prieto A, Lujambio A, Losada V, Freire M J and Cabello A 2016 Phys. Rev. Lett. 116 250404
[33] Larsson J Å, Kleinmann M, Gühne O and Cabello A 2011 AIP Conf. Proc. 1327 401
[34] Chen X, Su H Y and Chen J L 2016 Chin. Phys. Lett. 33 010302
[35] Song X B, Wang H B, Xiong J and Zhang X D 2012 Chin. Phys. Lett. 29 114214
[36] Xiang Y and Hong F Y 2013 Chin. Phys. B 22 110302
[37] Zhang Z M 2004 Chin. Phys. Lett. 21 5
[38] Fu J and Gao S J 2008 Chin. Phys. Lett. 25 2350
[39] Zhang D Y, Xie L J, Tang S Q, Zhan X G, Chen Y H and Gao F 2010 Chin. Phys. B 19 100305
[40] Xiang Y 2011 Chin. Phys. B 20 060301
[41] Wang Y, Fan D H and Guo W J 2015 Chin. Phys. B 24 084203
[42] D'Ambrosio V, Herbauts I, Amselem E, Nagali E, Bourennane M, Sciarrino F and Cabello A 2013 Phys. Rev. X 3 011012
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[5] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[9] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[10] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[11] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[12] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[13] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
No Suggested Reading articles found!