|
|
Experimental simulation of violation of the Wright inequality by coherent light |
Feng Zhu(朱锋), Wei Zhang(张巍), Yidong Huang(黄翊东) |
Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract In this paper, we investigate the simulation of violation of the Wright inequality by the classical optical experiment theoretically and experimentally. The feasibility of the simulation is demonstrated by theoretical analysis based on descriptions of the classical electrodynamics and quantum mechanics, respectively. Then, the simulation of violation of the Wright inequality is realized experimentally. The setup is based on a laser source, free-space optical devices and power meters. The experimental result violates the noncontextuality hidden variable bound, agreeing with the quantum bound. This method can be extended to other types of noncontextuality inequalities.
|
Received: 21 January 2017
Revised: 23 June 2017
Accepted manuscript online:
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2011CBA00303 and 2013CB328700) and Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology (TNList). |
Corresponding Authors:
Wei Zhang
E-mail: zwei@tsinghua.edu.cn
|
Cite this article:
Feng Zhu(朱锋), Wei Zhang(张巍), Yidong Huang(黄翊东) Experimental simulation of violation of the Wright inequality by coherent light 2017 Chin. Phys. B 26 100302
|
[1] |
Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
|
[2] |
Bell J S 1964 Physics 1 195
|
[3] |
Specker E P 1960 Dialectica 14 239
|
[4] |
Kochen S and Specker E P 1967 J. Math. Mech. 17 59
|
[5] |
Bell J S 1966 Rev. Mod. Phys. 38 447
|
[6] |
Fine A 1982 Phys. Rev. Lett. 48 291
|
[7] |
Liang Y C, Spekkens R W and Wiseman H M 2011 Phys. Rep. 506 1
|
[8] |
Klyachko A A, Can M A, Binicioǧlu S and Shumovsky A S 2008 Phys. Rev. Lett. 101 020403
|
[9] |
Clauser J F, Horne M A, Shimony A and Holt R A 1949 Phys. Rev. Lett. 23 880
|
[10] |
Wright R 1978 Mathematical Foundations of Quantum Mechanics (San Diego:Academic Press) p. 255
|
[11] |
Hasegawa Y, Loidl R, Badurek G, Baron M and Rauch H 2006 Phys. Rev. Lett. 97 230401
|
[12] |
Moussa O, Ryan C A, Cory D G and Laflamme R 2010 Phys. Rev. Lett. 104 160501
|
[13] |
Zhang X, Um M, Zhang J, An S, Wang Y, Deng D L, Shen C, Duan L M and Kim K 2013 Phys. Rev. Lett. 110 070401
|
[14] |
Kirchmair G, Zähringer F, Gerritsma R, Kleinmann M, Gühne O, Cabello A, Blatt R and Roos C F 2003 Nature 460 494
|
[15] |
Lapkiewicz R, Li P, Schaeff C, Langford N, Ramelow S, Wieśiak M and Zeilinger A 2011 Nature 474 490
|
[16] |
Amselem E, R å dmark M, Bourennane M and Cabello A 2009 Phys. Rev. Lett. 103 160405
|
[17] |
Amselem E, Danielsen L E, López-Tarrida A J, Portillo J R, Bourennane M and Cabello A 2012 Phys. Rev. Lett. 108 200405
|
[18] |
Howard M, Wallman J, Veitch V and Emerson J 2014 Nature 510 351
|
[19] |
Raussendorf R 2013 Phys. Rev. A 88 022322
|
[20] |
Hoban M J, Campbell E T, Loukopoulos K and Browne D E 2011 New J. Phys. 13 023014
|
[21] |
Spekkens R W, Buzacott D H, Keehn A J, Toner B and Pryde G J 2009 Phys. Rev. Lett. 102 010401
|
[22] |
Pusey M F 2014 Phys. Rev. Lett. 113 200401
|
[23] |
Qian X F, Littile B, Howell J C and Eberly J H 2015 Optica 2 611
|
[24] |
Kagalwala K H, Di Giuseppe G, Abouraddy A F and Saleh B E A 2012 Nat. Photonics 7 72
|
[25] |
De Zela F 2007 Phys. Rev. A 76 042119
|
[26] |
Töppel F, Aiello A, Marquardt C, Giacobino E and Leuchs G 2014 New J. Phys. 16 073019
|
[27] |
Qian X F and Eberly J H 2011 Opt. Lett. 36 4110-2
|
[28] |
Mohammad S, Rafsanjani H, Mirhosseini M, Magaña-Loaiza O S and Boyd R W 2015 Phys. Rev. A 92 023827
|
[29] |
Sun Y, Song X, Qin H, Zhang X, Yang Z and Zhang X Sci. Rep. 5 9175
|
[30] |
Borges C. V. S, Hor-Meyll M, Huguenin J A O and Khoury A Z 2010 Phys. Rev. A 82 033833
|
[31] |
Spreeuw R J C 1998 Found. Phys. 28 361
|
[32] |
Frustaglia D, Baltanas J P, Velazquez-Ahumada M C, Fernandez-Prieto A, Lujambio A, Losada V, Freire M J and Cabello A 2016 Phys. Rev. Lett. 116 250404
|
[33] |
Larsson J Å, Kleinmann M, Gühne O and Cabello A 2011 AIP Conf. Proc. 1327 401
|
[34] |
Chen X, Su H Y and Chen J L 2016 Chin. Phys. Lett. 33 010302
|
[35] |
Song X B, Wang H B, Xiong J and Zhang X D 2012 Chin. Phys. Lett. 29 114214
|
[36] |
Xiang Y and Hong F Y 2013 Chin. Phys. B 22 110302
|
[37] |
Zhang Z M 2004 Chin. Phys. Lett. 21 5
|
[38] |
Fu J and Gao S J 2008 Chin. Phys. Lett. 25 2350
|
[39] |
Zhang D Y, Xie L J, Tang S Q, Zhan X G, Chen Y H and Gao F 2010 Chin. Phys. B 19 100305
|
[40] |
Xiang Y 2011 Chin. Phys. B 20 060301
|
[41] |
Wang Y, Fan D H and Guo W J 2015 Chin. Phys. B 24 084203
|
[42] |
D'Ambrosio V, Herbauts I, Amselem E, Nagali E, Bourennane M, Sciarrino F and Cabello A 2013 Phys. Rev. X 3 011012
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|