Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 108801    DOI: 10.1088/1674-1056/26/10/108801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces

Hadi Bashiri, Mohammad Azim Karami, Shahramm Mohammadnejad
School of Electrical Engineering, Iran University of Science & Technology(IUST), Narmak, Tehran 16844, Iran
Abstract  

By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density.

Keywords:  IBC silicon solar cells      interface layer      recombination      interface defect density  
Received:  27 April 2017      Revised:  13 June 2017      Accepted manuscript online: 
PACS:  88.40.fc (Modeling and analysis)  
  88.40.hj (Efficiency and performance of solar cells)  
  88.40.jj (Silicon solar cells)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
Corresponding Authors:  Mohammad Azim Karami     E-mail:  karami@iust.ac.ir

Cite this article: 

Hadi Bashiri, Mohammad Azim Karami, Shahramm Mohammadnejad Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces 2017 Chin. Phys. B 26 108801

[1] Schwartz R J and Lammert M D 1977 IEEE Trans. Electron Dev. 24 337
[2] Lu M, Bowden S, Das U and Birkmire R 2007 Appl. Phys. Lett. 91 063507
[3] Shu B, Das U, Appel J, McCandless B and Hegedus S and Birkmire R 2010 Proceedings of the 35th IEEE Photovoltaic Specialist Conference, June 20-25, 2010, Honolulu, USA, p. 003223
[4] Lu M, Das U, Bowden S, Hegedus S and Birkmire R 2009 34th IEEE Photovoltaic Specialists Conference, June 7-12, 2009, Philadelphia, USA, p. 1475
[5] Diouf D, Kleider J P, Desrues T and Ribeyron P J 2009 Mater. Sci. Eng. B 159-160 291
[6] Padilla M, Höffler H, Reichel C, H. Chu, Greulich J, Rein S, Warta W, Hermle M and Schubert M C 2014 Solar Energy Mater. Solar Cells 120 Part A363
[7] Schmidt M, Korte L, Laades A, Stangl R, Schubert C, Angermann M S H, Conrad E and Maydell K V 2007 Thin Solid Films 515 7475
[8] Angermann M S H, Schulze T F, Conrad E, Rappich J and Korte L 2008 Proceedings of 23rd European Photovoltaic Solar Energy Conference, September 1-5, September 2008(Val. Spain, 2008), p. 1422-1426
[9] Xiao S and Xu S 2014 Crit. Rev. Solid State Mater. Sci. 39 277
[10] Hekmatshoar B, Shahrjerdi D and Sadana D K 2011 IEEE International Electron Devices Meeting, December 5-7, 2011, Washington, DC, USA (IEEE, 2011), p. 36-6
[11] Zhong S, Hua X and Shen W 2014 IEEE Trans. Electron Dev. 60 2104
[12] Mikolasek M, Pribytny P, Donoval D, Marek J, Chvala A, Molnar M and Kovac J 2014 Appl. Surf. Sci. 312 145
[13] Shu Zhan, Das Ujjwal, Allen John, Birkmire Robert and Hegedus Steven 2013 Progress in Photovoltaic 23 78
[14] OlibetS, Vallat-Sauvain E and Ballif C 2007 Phys. Rev. B 76 035326
[15] Li T A, McIntosh K R and Cuevas A 2008 J. Appl. Phys. 104 113718
[16] Garin M, Rau U, Brendle W, Martin I and Alcubilla R 2005 J. Appl. Phys. 98 093711
[17] Shockley W and Read W T 1952 Phys. Rev. 87 835
[18] Hall R N 1952 Phys. Rev. 87 387
[19] Hurkx G A M, Klaasen D B M, Knuvers M P G and Ohara F G 1989 International Technical Digest on Electron Devices Meeting, December 3-6, 1989, Washington, DC, USA, p. 30
[20] ATLAS User's Manual, Device Simulation Software, SILVACO, Santa Clara, USA 2016
[21] Gudovskikh A S, Kleider J P, Damon-LascosteJ, Roca iCabarrocas P, Veschetti Y, Muller J C, Ribeyron P J and Rolland E 2006 Thin Solid Films 385 511
[22] Diouf D, Kleider J P and Longeaud C 2012 Physics and technology of amorphous-crystalline heterostructure silicon solar cells (New York:Springer) p. 493
[23] Jensen N, Rau U, Hausner R, Uppal S, Oberbeck L, Bergmann R and Werner J 2000 J. Appl. Phys. 87 2639
[1] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[2] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[3] Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
Xiang-Chuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Jing Min(闵靖), Shi-Guo Peng(彭世国), and Kai-Jun Jiang(江开军). Chin. Phys. B, 2022, 31(1): 016701.
[4] Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2020, 29(6): 064207.
[5] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
[6] Enhancement of electron-ion recombination rates at low energy range in the heavy ion storage ring CSRm
Nadir Khan, Zhong-Kui Huang(黄忠魁), Wei-Qiang Wen(汶伟强), Shu-Xing Wang(汪书兴), Han-Bing Wang(汪寒冰), Wan-Lu Ma(马万路), Xiao-Long Zhu(朱小龙), Dong-Mei Zhao(赵冬梅), Li-Jun Mao(冒立军), Jie Li(李杰), Xiao-Ming Ma(马晓明), Mei-Tang Tang(汤梅堂), Da-Yu Yin(殷达钰), Wei-Qing Yang(杨维青), Jian-Cheng Yang(杨建成), You-Jin Yuan(原有进), Lin-Fan Zhu(朱林繁), Xin-Wen Ma(马新文). Chin. Phys. B, 2020, 29(3): 033401.
[7] Effect of recombination process in femtosecond laser-induced modification on Ge crystal
Jia-Qi Ju(居家奇), Zi-Yao Qin(秦子尧), Ju-Kun Liu(刘聚坤), Hong-Wei Zhao(赵宏伟), Yao-Qing Huang(黄耀清), Rong-Rong Hu(胡蓉蓉), and Hua Wu(吴华)$. Chin. Phys. B, 2020, 29(11): 114208.
[8] Improvement of radiative recombination rate in deep ultraviolet laser diodes with step-like quantum barrier and aluminum-content graded electron blocking layer
Yi-Fu Wang(王一夫), Mussaab I Niass, Fang Wang(王芳), Yu-Huai Liu(刘玉怀). Chin. Phys. B, 2020, 29(1): 017301.
[9] Room-temperature large photoinduced magnetoresistance in semi-insulating gallium arsenide-based device
Xiong He(何雄), Zhi-Gang Sun(孙志刚). Chin. Phys. B, 2018, 27(6): 067204.
[10] Investigations of the dielectronic recombination of phosphorus-like tin at CSRm
Xin Xu(许鑫), Shu-Xing Wang(汪书兴), Zhong-Kui Huang(黄忠魁), Wei-Qiang Wen(汶伟强), Han-Bing Wang(汪寒冰), Tian-Heng Xu(徐天衡), Xiao-Ya Chuai(啜晓亚), Li-Jun Dou(豆丽君), Wei-Qing Xu(徐卫青), Chong-Yang Chen(陈重阳), Chuan-Ying Li(李传莹), Jian-Guo Wang(王建国), Ying-Long Shi(师应龙), Chen-Zhong Dong(董晨钟), Li-Jun Mao(冒立军), Da-Yu Yin(殷达钰), Jie Li(李杰), Xiao-Ming Ma(马晓明), Jian-Cheng Yang(杨建成), You-Jin Yuan(原有进), Xin-Wen Ma(马新文), Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2018, 27(6): 063402.
[11] Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer
Shuaipu Zang(臧帅普), Yinglin Wang(王莹琳), Meiying Li(李美莹), Wei Su(苏蔚), Meiqi An(安美琦), Xintong Zhang(张昕彤), Yichun Liu(刘益春). Chin. Phys. B, 2018, 27(1): 018503.
[12] TiO2 composite electron transport layers for planar perovskite solar cells by mixed spray pyrolysis with precursor solution incorporating TiO2 nanoparticles
Jiaqi Tian(田嘉琪), Hongcui Li(李红翠), Haiyue Wang(王海月), Bo Zheng(郑博), Yebin Xue(薛叶斌), Xizhe Liu(刘喜哲). Chin. Phys. B, 2018, 27(1): 018810.
[13] Time-resolved spectroscopy for 5s'4D7/2 state transitions undergoing electron-ion recombination in femtosecond laser-produced copper plasma
Hai-Ying Song(宋海英), Hui Li(李辉), Yan-Jie Zhang(张艳杰), Peng Gu(谷鹏), Hai-Yun Liu(刘海云), Wei Li(李维), Xun Liu(刘勋), Shi-Bing Liu(刘世炳). Chin. Phys. B, 2017, 26(12): 124208.
[14] A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Yang Lu(路杨), Miao-Hui Zhang(张苗辉), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2016, 25(10): 100503.
[15] Influence of RE-rich phase distribution in initial alloy on anisotropy of HDDR powders
Cai Ling-Wen (蔡岭文), Guo Shuai (郭帅), Ding Guang-Fei (丁广飞), Chen Ren-Jie (陈仁杰), Liu Jian (刘剑), Lee Don (李东), Yan A-Ru (闫阿儒). Chin. Phys. B, 2015, 24(9): 097505.
No Suggested Reading articles found!