ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Decoherence of fiber light sources using a single-trench fiber |
Huahui Zhang(张华辉)1, Weili Zhang(张伟利)1,†, Zhao Wang(王昭)1, Hongyang Zhu(朱洪杨)1, Chao Yu(余超)2, Jiayu Guo(郭佳宇)1, Shanshan Wang(王珊珊)1, and Yunjiang Rao(饶云江)1 |
1 School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; 2 China Second Institute of Railway Engineering Group Co. LTD, Chengdu 610031, China |
|
|
Abstract Decoherence of fiber laser sources is of great importance in imaging applications, and most current studies use ordinary multi-mode fibers (MMFs). Here, a newly designed single-trench fiber (STF) is investigated to reduce the spatial coherence of fiber light source and compared with MMFs. By bending two fibers with different turns, speckle contrast of a 0.8-m-long STF can be reduced from 0.13 to 0.08, while a 0.8-m-long MMF shows an inverse result. Through speckle contrast and decoupling-mode analysis, the reason of this inverse trend is revealed. Firstly, the STF supports more modes than the MMF due to its larger core diameter. Secondly, mode leak from the first core of the STF can couple to the second core when bending the STF. Thus, power distribution among high and low-order modes become more even, reducing the spatial coherence considerably. However, in the MMF, high-order modes become leaky modes and decrease slightly when bending the fiber. This work provides a new method to modulate coherence of light source and a new angle to study decoherence principle using special fibers.
|
Received: 09 May 2020
Revised: 06 August 2020
Accepted manuscript online: 09 September 2020
|
PACS:
|
42.81.-i
|
(Fiber optics)
|
|
42.87.-d
|
(Optical testing techniques)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974071 and 61635005) and in part by Sichuan Science and Technology Program, China (Grant No. 2018HH0148). |
Corresponding Authors:
†Corresponding author. E-mail: wl_zhang@uestc.edu.cn
|
Cite this article:
Huahui Zhang(张华辉), Weili Zhang(张伟利), Zhao Wang(王昭), Hongyang Zhu(朱洪杨), Chao Yu(余超), Jiayu Guo(郭佳宇), Shanshan Wang(王珊珊), and Yunjiang Rao(饶云江) Decoherence of fiber light sources using a single-trench fiber 2020 Chin. Phys. B 29 124210
|
[1] Goodman J W Speckle Phenomena in Optics: Theory and Applications (Englewood, Colorado: Roberts Company) p. 201 https://spie.org/Publications/Book/2548482?SSO=12007 [2] Guo G J and Shao Y Acta Phys. Sin. 7 2089 (in Chinese) http://wulixb.iphy.ac.cn/cn/article/doi/10.7498/aps.53.20892004 [3] Liang M D, Chen L, Hu Y H, Lin W T and Chen Y H Chin. Phys. B 27 104202 DOI: 10.1088/1674-1056/27/10/1042022018 [4] Wang D Y, Wang Y X, Guo S, Rong L and Zhang Y Z Acta Phys. Sin. 63 154205 (in Chinese) DOI: 10.7498/aps.63.1542052014 [5] Chen Z Y, Li Z G, She W J and Xia A L Acta Phys. Sin. 68 054206 (in Chinese) DOI: 10.7498/aps.68.201815782019 [6] Redding B, Cerjan A, Huang X, Lee M L, Stone A D, Choma M A and Cao H Proc. Natl. Acad. Sci. USA 1121304 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321308/#2015 [7] Fercher A F, Drexler W, Hitzenberger C K and Lasser T Rep. Prog. Phys. 2 239 https://iopscience.iop.org/article/10.1088/0034-4885/66/2/204/meta2003 [8] Drexler W and Fujimoto J G Optical Coherence Tomography: Technology and Applications (Berlin: Springer) p. 33 https://www.springer.com/gp/book/97833190641852008 [9] Carvalho M T, Lotay A S, Kenny F M, Girkin J M and Gomes A S L Proc. SPIE 9701 97010Q DOI: 10.1117/12.22096232016 [10] Kim J, Miller D T, Kim E K, Oh S, Oh J H and Milner T E J. Biomed Opt. 10 064034 DOI: 10.1117/1.21380312005 [11] Desjardins A E, Vakoc B J, Tearney G J and Bouma B E Opt. Express 114736 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-14-11-47362006 [12] Szkulmowski M, Gorczynska I, Szlag D, Sylwestrzak M, Kowalczyk A and Wojtkowski M Opt. Express 21337 https://www.osapublishing.org/oe/abstract.cfm?URI=oe-20-2-13372012 [13] Liba O, Lew M D, SoRelle E D, Dutta R, Sen D, Moshfeghi D M, Chu S and Zerda A Nat. Commun. 8 12 https://www.nature.com/articles/ncomms158452017 [14] Wang F, Liu X L, Yuan Y S and Cai Y J Opt. Lett. 111814 https://www.osapublishing.org/ol/abstract.cfm?uri=ol-38-11-18142013 [15] Mehta D S, Naik D N, Singh R K and Takeda M Appl. Opt. 121894 https://www.osapublishing.org/ao/abstract.cfm?uri=ao-51-12-18942012 [16] Liu Y L, Yang W H, Xiao S M, Zhang N, Fan Y B, Qu G Y and Song Q H ACS Nano 9 10653 https://pubs.acs.org/doi/abs/10.1021/acsnano.9b04925?cfchlcaptchatk=dd0925b965d388a45dfb6b89de13509ab5410699-1588986711-0-ARcLx0irH-O3Z1p30r8Ld7t8TcnRCwacfWaasGmibpSrmckoIR06D-Cb0j37f9ZgKlqr62q7aGxjun5spMYFZCSCGQNjs7SJvRwn7uifFjlelGeLxKDmJFTrNowks16nWdS8XxYqLJ4HvkiG8wksE5v30JbwTbKnQEDKYmVsMj-ySQZhOWFRaIWKTqTQsjXOFH3tdasExRsqumL93duv39Eb2jq9fTGi61L3htLetCpqCbl6xBlW5UqqFJ-AMSLB3PobGSJdJUbPmL7QkvBNnwpKkjnW9mH7grgepLLqJK67GUgeXbPFpIHDkqTFfkNirHuA0vdqK2XKTg132BHxfm7-oDUWrvkgM4GDG5wng6IveM998gXaYiXOsRv5IE-kj8JZZIm4DrhxujpkXYlHcYJlQuKD9vPH15oY2019 [17] Efimov A Opt. Express 33 15577 https://www.osapublishing.org/oe/abstract.cfm?URI=oe-22-13-155772014 [18] Manni J G and Goodman J W Opt. Express 10 11288 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-10-112882012 [19] Ma R, Zhang W L, Guo J Y and Rao Y J Opt. Express 20 26758 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-20-267582018 [20] Ma R, Rao Y J, Zhang W L and Hu B IEEE J. Sel. Top. Quantum Electron. 25 0900106 https://ieeexplore.ieee.org/document/83566272019 [21] Ma R, Li J Q, Guo J Y, Wu H, Zhang H H, Hu B, Rao Y J and Zhang W L Opt. Express 68738 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-6-87382019 [22] Jain D and Sahu J K J. Lightwave Technol. 143412 https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-34-14-34122016 [23] Efimov A Opt. Lett. 194767 https://www.osapublishing.org/ol/abstract.cfm?uri=ol-43-19-47672018 [24] Redding B, Choma M A and Cao H Nat. Photon. 7 497 https://www.nature.com/articles/nphoton.2012.902012 [25] Hokr B H, Schmidt M S, Bixler J N, Dyer P N, Noojin G D, Redding B, Thomas R J, Rockwell B A and Cao H J. Mod. Opt. 1 46 https://www.tandfonline.com/doi/abs/10.1080/09500340.2015.10789192016 [26] Redding B, Ahmadi P, Mokan V, Seifert M, Choma M A and Cao H Opt. Lett. 204607 https://www.ncbi.nlm.nih.gov/pubmed/264695752015 [27] Minh N D, Blin S, Nam N T, Le S D, Provino L, Thual M and Chartier T Appl. Opt. 4 450 https://www.osapublishing.org/ao/abstract.cfm?uri=ao-51-4-4502012 [28] Nicholson J W, Yablon A D, Ramachandran S and Ghalmi S Opt. Express 107233 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-16-10-72332008 [29] Ma R, Zhang H H, Egor M, Srikanth S, Wu H, Zhang W L, Vladislav D, Hu T P, Hu Z J, Rao Y J and Sergei K T Opt. Express 14 20587 https://www.osapublishing.org/oe/abstract.cfm?URI=oe-28-14-205872020 [30] Ma R, Wang Z, Zhang H H, Zhang W L and Rao Y J Opt. Lett. 133816 https://www.osapublishing.org/ol/abstract.cfm?URI=ol-45-13-38162020 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|