Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 124210    DOI: 10.1088/1674-1056/abb65f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Decoherence of fiber light sources using a single-trench fiber

Huahui Zhang(张华辉)1, Weili Zhang(张伟利)1,†, Zhao Wang(王昭)1, Hongyang Zhu(朱洪杨)1, Chao Yu(余超)2, Jiayu Guo(郭佳宇)1, Shanshan Wang(王珊珊)1, and Yunjiang Rao(饶云江)1
1 School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; 2 China Second Institute of Railway Engineering Group Co. LTD, Chengdu 610031, China
Abstract  Decoherence of fiber laser sources is of great importance in imaging applications, and most current studies use ordinary multi-mode fibers (MMFs). Here, a newly designed single-trench fiber (STF) is investigated to reduce the spatial coherence of fiber light source and compared with MMFs. By bending two fibers with different turns, speckle contrast of a 0.8-m-long STF can be reduced from 0.13 to 0.08, while a 0.8-m-long MMF shows an inverse result. Through speckle contrast and decoupling-mode analysis, the reason of this inverse trend is revealed. Firstly, the STF supports more modes than the MMF due to its larger core diameter. Secondly, mode leak from the first core of the STF can couple to the second core when bending the STF. Thus, power distribution among high and low-order modes become more even, reducing the spatial coherence considerably. However, in the MMF, high-order modes become leaky modes and decrease slightly when bending the fiber. This work provides a new method to modulate coherence of light source and a new angle to study decoherence principle using special fibers.
Keywords:  single-trench fiber      multi-mode fiber      bending fiber      speckle contrast  
Received:  09 May 2020      Revised:  06 August 2020      Accepted manuscript online:  09 September 2020
PACS:  42.81.-i (Fiber optics)  
  42.87.-d (Optical testing techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974071 and 61635005) and in part by Sichuan Science and Technology Program, China (Grant No. 2018HH0148).
Corresponding Authors:  Corresponding author. E-mail: wl_zhang@uestc.edu.cn   

Cite this article: 

Huahui Zhang(张华辉), Weili Zhang(张伟利), Zhao Wang(王昭), Hongyang Zhu(朱洪杨), Chao Yu(余超), Jiayu Guo(郭佳宇), Shanshan Wang(王珊珊), and Yunjiang Rao(饶云江) Decoherence of fiber light sources using a single-trench fiber 2020 Chin. Phys. B 29 124210

[1] Goodman J W Speckle Phenomena in Optics: Theory and Applications (Englewood, Colorado: Roberts Company) p. 201 https://spie.org/Publications/Book/2548482?SSO=12007
[2] Guo G J and Shao Y Acta Phys. Sin. 7 2089 (in Chinese) http://wulixb.iphy.ac.cn/cn/article/doi/10.7498/aps.53.20892004
[3] Liang M D, Chen L, Hu Y H, Lin W T and Chen Y H Chin. Phys. B 27 104202 DOI: 10.1088/1674-1056/27/10/1042022018
[4] Wang D Y, Wang Y X, Guo S, Rong L and Zhang Y Z Acta Phys. Sin. 63 154205 (in Chinese) DOI: 10.7498/aps.63.1542052014
[5] Chen Z Y, Li Z G, She W J and Xia A L Acta Phys. Sin. 68 054206 (in Chinese) DOI: 10.7498/aps.68.201815782019
[6] Redding B, Cerjan A, Huang X, Lee M L, Stone A D, Choma M A and Cao H Proc. Natl. Acad. Sci. USA 1121304 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321308/#2015
[7] Fercher A F, Drexler W, Hitzenberger C K and Lasser T Rep. Prog. Phys. 2 239 https://iopscience.iop.org/article/10.1088/0034-4885/66/2/204/meta2003
[8] Drexler W and Fujimoto J G Optical Coherence Tomography: Technology and Applications (Berlin: Springer) p. 33 https://www.springer.com/gp/book/97833190641852008
[9] Carvalho M T, Lotay A S, Kenny F M, Girkin J M and Gomes A S L Proc. SPIE 9701 97010Q DOI: 10.1117/12.22096232016
[10] Kim J, Miller D T, Kim E K, Oh S, Oh J H and Milner T E J. Biomed Opt. 10 064034 DOI: 10.1117/1.21380312005
[11] Desjardins A E, Vakoc B J, Tearney G J and Bouma B E Opt. Express 114736 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-14-11-47362006
[12] Szkulmowski M, Gorczynska I, Szlag D, Sylwestrzak M, Kowalczyk A and Wojtkowski M Opt. Express 21337 https://www.osapublishing.org/oe/abstract.cfm?URI=oe-20-2-13372012
[13] Liba O, Lew M D, SoRelle E D, Dutta R, Sen D, Moshfeghi D M, Chu S and Zerda A Nat. Commun. 8 12 https://www.nature.com/articles/ncomms158452017
[14] Wang F, Liu X L, Yuan Y S and Cai Y J Opt. Lett. 111814 https://www.osapublishing.org/ol/abstract.cfm?uri=ol-38-11-18142013
[15] Mehta D S, Naik D N, Singh R K and Takeda M Appl. Opt. 121894 https://www.osapublishing.org/ao/abstract.cfm?uri=ao-51-12-18942012
[16] Liu Y L, Yang W H, Xiao S M, Zhang N, Fan Y B, Qu G Y and Song Q H ACS Nano 9 10653 https://pubs.acs.org/doi/abs/10.1021/acsnano.9b04925?cfchlcaptchatk=dd0925b965d388a45dfb6b89de13509ab5410699-1588986711-0-ARcLx0irH-O3Z1p30r8Ld7t8TcnRCwacfWaasGmibpSrmckoIR06D-Cb0j37f9ZgKlqr62q7aGxjun5spMYFZCSCGQNjs7SJvRwn7uifFjlelGeLxKDmJFTrNowks16nWdS8XxYqLJ4HvkiG8wksE5v30JbwTbKnQEDKYmVsMj-ySQZhOWFRaIWKTqTQsjXOFH3tdasExRsqumL93duv39Eb2jq9fTGi61L3htLetCpqCbl6xBlW5UqqFJ-AMSLB3PobGSJdJUbPmL7QkvBNnwpKkjnW9mH7grgepLLqJK67GUgeXbPFpIHDkqTFfkNirHuA0vdqK2XKTg132BHxfm7-oDUWrvkgM4GDG5wng6IveM998gXaYiXOsRv5IE-kj8JZZIm4DrhxujpkXYlHcYJlQuKD9vPH15oY2019
[17] Efimov A Opt. Express 33 15577 https://www.osapublishing.org/oe/abstract.cfm?URI=oe-22-13-155772014
[18] Manni J G and Goodman J W Opt. Express 10 11288 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-10-112882012
[19] Ma R, Zhang W L, Guo J Y and Rao Y J Opt. Express 20 26758 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-20-267582018
[20] Ma R, Rao Y J, Zhang W L and Hu B IEEE J. Sel. Top. Quantum Electron. 25 0900106 https://ieeexplore.ieee.org/document/83566272019
[21] Ma R, Li J Q, Guo J Y, Wu H, Zhang H H, Hu B, Rao Y J and Zhang W L Opt. Express 68738 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-6-87382019
[22] Jain D and Sahu J K J. Lightwave Technol. 143412 https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-34-14-34122016
[23] Efimov A Opt. Lett. 194767 https://www.osapublishing.org/ol/abstract.cfm?uri=ol-43-19-47672018
[24] Redding B, Choma M A and Cao H Nat. Photon. 7 497 https://www.nature.com/articles/nphoton.2012.902012
[25] Hokr B H, Schmidt M S, Bixler J N, Dyer P N, Noojin G D, Redding B, Thomas R J, Rockwell B A and Cao H J. Mod. Opt. 1 46 https://www.tandfonline.com/doi/abs/10.1080/09500340.2015.10789192016
[26] Redding B, Ahmadi P, Mokan V, Seifert M, Choma M A and Cao H Opt. Lett. 204607 https://www.ncbi.nlm.nih.gov/pubmed/264695752015
[27] Minh N D, Blin S, Nam N T, Le S D, Provino L, Thual M and Chartier T Appl. Opt. 4 450 https://www.osapublishing.org/ao/abstract.cfm?uri=ao-51-4-4502012
[28] Nicholson J W, Yablon A D, Ramachandran S and Ghalmi S Opt. Express 107233 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-16-10-72332008
[29] Ma R, Zhang H H, Egor M, Srikanth S, Wu H, Zhang W L, Vladislav D, Hu T P, Hu Z J, Rao Y J and Sergei K T Opt. Express 14 20587 https://www.osapublishing.org/oe/abstract.cfm?URI=oe-28-14-205872020
[30] Ma R, Wang Z, Zhang H H, Zhang W L and Rao Y J Opt. Lett. 133816 https://www.osapublishing.org/ol/abstract.cfm?URI=ol-45-13-38162020
[1] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[2] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[3] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[6] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
[7] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[8] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[9] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[10] Switchable instantaneous frequency measurement by optical power monitoring based on DP-QPSK modulator
Yu-Lin Zhu(朱昱琳), Bei-Lei Wu(武蓓蕾), Jing Li(李晶), Mu-Guang Wang(王目光), Shi-Ying Xiao(肖世莹), and Feng-Ping Yan(延凤平). Chin. Phys. B, 2022, 31(4): 044202.
[11] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[12] Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy
Yu-Hua Hang(杭玉桦), Yan Qiu(邱岩), Ying Zhou(周颖), Tao Liu(刘韬), Bin Zhu(朱斌), Kaixing Liao(廖开星), Ming-Xin Shi(时铭鑫), and Fei Xue(薛飞). Chin. Phys. B, 2022, 31(2): 024212.
[13] Wavelength and sensitivity tunable long period gratings fabricated in fluid-cladding microfibers
Wa Jin(金娃), Linke Zhang(张林克), Xiang Zhang(张祥), Ming Xu(徐铭), Weihong Bi(毕卫红), and Yuefeng Qi(齐跃峰). Chin. Phys. B, 2022, 31(1): 014207.
[14] Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding
Shuai Sun(孙帅), Wei Shi(史伟), Quan Sheng(盛泉), Shijie Fu(付士杰), Zhongbao Yan(闫忠宝), Shuai Zhang(张帅), Junxiang Zhang(张钧翔), Chaodu Shi(史朝督), Guizhong Zhang(张贵忠), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(12): 124205.
[15] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
No Suggested Reading articles found!