Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 058503    DOI: 10.1088/1674-1056/28/5/058503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation

Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南)
School of Information Science and Technology, Southwest Jiao Tong University, Chengdu 611756, China
Abstract  

A power metal-oxide-semiconductor field-effect transistor (MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electric field at reversed blocking state has been studied. To analyze the electric field, the drift region is segmented into four regions, where the conformal mapping method based on Schwarz-Christoffel transformation has been applied. According to the analysis, the improvement in the electric field for using the low permittivity trench is mainly due to the two electric field peaks generated in the drift region around this dielectric trench. The analytical results of the electric field and the potential models are in good agreement with the simulation results.

Keywords:  conformal mapping      Schwarz-Christoffel transformation      electric field      trench metal-oxide-semiconductor field-effect transistor (MOSFET)      breakdown voltage  
Received:  19 December 2018      Revised:  06 March 2019      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  77.30.df  
  51.50.+v (Electrical properties)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61404110) and the National Higher-education Institution General Research and Development Project, China (Grant No. 2682014CX097).

Corresponding Authors:  Zhi-Gang Wang     E-mail:  zhigangwang@swjtu.edu.cn

Cite this article: 

Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南) Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation 2019 Chin. Phys. B 28 058503

[1] Li P C, Luo X R, Luo Y C, Zhou K, Shi X L, Zhang Y H and Lv M S 2015 Chin. Phys. B 24 047304
[2] Qiao M, Wang Y R, Zhou X, Jin F, Wang H H, Wang Z, Li Z J and Zhang B 2015 Trans. Electron. Devices 62 2933
[3] Xia C, Cheng X H, Wang Z J, Cao D, Jia T T, Yu Y H and Shen D S 2013 Trans. Electron. Devices 60 1279
[4] Zhou K, Luo X R, Xu Q, Li Z J and Zhang B 2014 Trans. Electron. Devices 61 2466
[5] Hu S D, Zhang L, Luo J, Tan K Z, Chen W S, Gan P, Zhou X C and Zhu Z 2013 Electron. Lett. 49 223
[6] Hu S D, Zhang L, Luo X R, Zhang B, Li Z J and Wu L J 2011 Chin. Phys. Lett. 28 128503
[7] Luo Y C, Luo X R, Hu G Y, Fan Y H, Li P C, Wei J, Tan Q and Zhang B 2014 Chin. Phys. B 23 077306
[8] Zheng Z, Li W and Li P 2013 Chin. Phys. B 22 047701
[9] Luo X R, Yao G L, Zhang Z Y, Jiang Y H, Zhou K, Wang P, Wang Y G, Lei T F, Zhang Y X and Wei J 2012 Chin. Phys. B 21 068501
[10] Zhou K, Luo X R, Fan Y H, Luo Y C, Hu X R and Zhang B 2013 Chin. Phys. B 22 067306
[11] Shi X L, Luo X R, Wei J, Tan Q, Liu J P, Xu Q, Li P C, Tian R C and Ma D 2014 Chin. Phys. B 23 127303
[12] Williams R K, Darwish M N, Blanchard R A, Siemieniec R, Rutter P and Yusuke Kawaguchi 2017 Trans. Electron. Devices 64 674
[13] Luo X R, Zhang B, Li Z J, Guo Y F, Tang X W and Liu Y 2007 IEEE Electron. Dev. Lett. 28 422
[14] Son W S, Sohn Y H and Choi S Y 2003 Electron. Lett. 39 1760
[15] Wu L J, Zhang W T, Shi Q, Cai P F and He H C 2014 Electron. Lett. 50 1982
[16] Yin C, Wei J, Zhou K and Luo X R 2015 Electron. Lett. 51 1348
[17] Li W, Zheng Z, Wang Z G, Li P, Fu X J, He Z R, Liu F, Yang F, Xiang F and Liu L C 2012 Chin. Phys. B 21 078502
[18] Zhao Y Y, Qiao M, Wang W B, Wang M and Zhang B 2012 Chin. Phys. B 21 018501
[19] Udreaa F, Wang Y G, Deng H and Luo X R 2010 Chin. Phys. B 19 077306
[20] Wei J, Luo X R, Zhang Y H, Li P C, Zhou K, Li Z J, Lei D M, He F Z and Zhang B 2015 IEEE 27th Symposium on Power Semiconductor Devices and ICs, May 10-14, 2015 Hong Kong, China, 15203419
[21] Hu X R and Lv R 2014 Chin. Phys. B 23 128501
[22] Hu X R, Zhang B, Luo X R and Li Z J 2012 Solid State Electronics. 69 89
[23] Hu X R, Zhang B, Luo X R, Wang Y G, Lei T F and Li Z J 2012 Chin. Phys. B 21 078502
[24] Zhang Y H, Wei J, Yin C, Tan Q, Liu J P, Li P C and Luo X R 2016 Chin. Phys. B 25 027306
[25] Huang J Q, He W W, Chen J, Luo J X, Lu K and Chai Z 2016 Chin. Phys. Lett. 33 096101
[26] Jin Q X, Liu B, Liu Y, Wang W W, Wang H, Xu Z, Gao D, Wang Q, Xia Y Y, Song Z T and Feng S L 2016 Chin. Phys. Lett. 33 098502
[27] Yuan S, Duan B X, Cao Z, Guo H J and Yang Y 2016 Solid-State Electron. 123 6
[28] Wang B, Wang Z G and Sun J 2016 IEEE International Conference on Solid-State and Integrated Circuit Technology, October 25-28, 2016 Hangzhou, China, 17081943
[29] Wang Z G, Zhang B, Fu Q, Xie G and Li Z J 2012 IEEE Electron. Dev. Lett. 33 703
[30] Wang Z G, Chen W J, Zhang B and Li Z J 2012 Chin. Phys. B 29 107202
[31] Zeev N 1975 Conformal Mapping (New York: Dover Publications) pp. 266-332
[32] Panofsky W K H and Phillips M 1962 Classical Electricity and Magnetism (Reading: Addison-Wesley) pp. 245-363
[33] Chung S K 2000 IEEE Trans. Electron. Dev. 47 1006
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[5] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[8] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[9] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[10] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[11] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[12] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[13] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[14] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[15] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
No Suggested Reading articles found!