Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 027507    DOI: 10.1088/1674-1056/22/2/027507
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Al-doping-induced magnetocapacitance in the multiferroic CuCrS2

Liu Rong-Deng (刘荣灯)a b, Liu Yun-Tao (刘蕴韬)a, Chen Dong-Feng (陈东风)a, He Lun-Hua (何伦华)b, Yan Li-Qin (闫丽琴)b, Wang Zhi-Cui (王志翠)b, Sun Yang (孙阳)b, Wang Fang-Wei (王芳卫)b
a China Institute of Atomic Energy, Beijing 102413, China;
b State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In this paper, magnetic and dielectric properties of the quasi-two-dimensional triangular-lattice system CuCrS2 and its B-site-diluted analogs CuAl1-xCrxS2 (x=0.01 and x=0.02) are investigated. Antiferromagnetic phase transition is observed at about 38.5 K by magnetization measurement without shift induced by a small amount of dopping Al. Magnetodielectric effect is found near TN in each of the three compounds. The dielectric constant decreases and the magnetocapacitance increases with the increase of substitution of nonmagnetic Al3+ ions for the magnetic Cr3+ ions. The negative magnetocapacitive effect reaches ~13% for CuAl0.02Cr0.98S2.
Keywords:  magnetocapacitance      dielectric property      magnetoelectric coupling      antiferromagnetics  
Received:  14 May 2012      Revised:  06 September 2012      Accepted manuscript online: 
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
  77.22.-d (Dielectric properties of solids and liquids)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  75.50.Ee (Antiferromagnetics)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB833102) and the National Natural Science Foundation of China (Grant No. 10974244).
Corresponding Authors:  Wang Fang-Wei     E-mail:  fwwang@aphy.iphy.ac.cn

Cite this article: 

Liu Rong-Deng (刘荣灯), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Wang Fang-Wei (王芳卫) Al-doping-induced magnetocapacitance in the multiferroic CuCrS2 2013 Chin. Phys. B 22 027507

[1] Choudhury N, Walizer L, Lisenkov S and Bellaiche L 2011 Nature 470 513
[2] Takagi H and Hwang H Y 2010 Science 327 1601
[3] Kimura K, Nakamura H, Kimura S, Hagiwara M and Kimura T 2009 Phys. Rev. Lett. 103 107201
[4] Spaldin N A and Fiebig M 2005 Science 309 391
[5] Zhang C H, Xu Z, Gao J J, Zhu C J and Yao X 2011 Chin. Phys. B 20 097702
[6] Ding B F and Zhou S Q 2011 Chin. Phys. B 20 127701
[7] Yan L Q, He L H, Wang F W and Shen J 2011 Chin. Phys. B 20 097503
[8] Rasch J C E, Boehm M, Ritter C, Mutka H, Schefer J, Keller L, Abramova G M, Cervellino A and Loffler J F 2009 Phys. Rev. B 80 104431
[9] Luo S J, Wang K F, Li S Z, Dong X W, Yan Z B, Cai H L and Liu J M 2009 Appl. Phys. Lett. 94 172504
[10] Kundys B, Maignan A, Pelloquin D and Simon C 2009 Solid State Sci. 11 1035
[11] Kanetsuki S, Mitsuda S, Nakajima T, Anazawa D, Katori H A and Prokes K 2007 J. Phys.: Condens. Matter 19 145244
[12] Terada N, Mitsuda S and Gukasov A 2006 Phys. Rev. B 73 014419
[13] Abramova G M, Petrakovskiy G A, Vtyurin A N, Rasch J C E, Krylov A S, Gerasimova J V, Velikanov D A, Boehm V M and Sokolov V 2010 J. Raman Spectrosc. 41 1485
[14] Abramova G, Pankrats A, Petrakovskii G, Rasch J C E, Boehm M, Vorotynov A, Tugarinov V, Szumszak R, Bovina A and Vasilev V 2010 J. Appl. Phys. 107 093914
[15] Tsujii N and Kitazawa H 2007 J. Phys.: Condens. Matter 19 145245
[16] Tsujii N, Kitazawa H and Kido G 2006 Phys. Stat. Sol. C 3 2775
[17] Almukhametov R F, Yakshibayev R A, Gabitov E V, Abdullin A R and Kutusheva R M 2003 Phys. Stat. Sol. B 236 29
[18] Seki S, Onose Y and Tokura Y 2008 Phys. Rev. Lett. 101 067204
[19] Beck M, Ellner M and Mittemeijer E J 2001 Acta Mater. 49 985
[20] Greedan J E 2001 J. Mater. Chem. 11 37
[21] Huang Z J, Cao Y, Sun Y Y, Xue Y Y and Chu C W 1997 Phys. Rev. B 56 2623
[22] Yan L Q, Sun Z H, He L H, Shen J, Zhang J and Wang F W 2008 J. Appl. Phys. 103 07E308
[23] Yang Y, Liu J M, Huang H B, Zou W Q, Bao P and Liu Z G 2004 Phys. Rev. B 70 132101
[24] Fan J, Dong X W, Song Y, Wang K F, Liu J M and Jiang X P 2011 Chin. Phys. B 20 027502
[25] Catalan G 2006 Appl. Phys. Lett. 88 102902
[26] Ritus A I, Pronin A V, Volkov A A, Lunkenheimer P, Loidl A, Shcheulin A S and Ryskin A I 2002 Phys. Rev. B 65 165209
[27] Catalan G, Neill D O, Bowman R M and Gregg J M 2000 Appl. Phys. Lett. 77 3078
[28] Schmid H 2008 J. Phys.: Condens. Matter 20 434201
[1] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[2] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[3] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[4] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[5] Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure
Na Li(李娜), Jin Tang(汤进), Lei Su(苏磊), Ya-Jiao Ke(柯亚娇), Wei Zhang(张伟), Zong-Kai Xie(谢宗凯), Rui Sun(孙瑞), Xiang-Qun Zhang(张向群), Wei He(何为), and Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2021, 30(11): 117502.
[6] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[7] Spin transport in antiferromagnetic insulators
Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之). Chin. Phys. B, 2019, 28(8): 088504.
[8] Optical-induced dielectric tunability properties of DAST crystal in THz range
De-Gang Xu(徐德刚), Xian-Li Zhu(朱先立), Yu-Ye Wang(王与烨), Ji-Ning Li(李吉宁), Yi-Xin He(贺奕俽), Zi-Bo Pang(庞子博), Hong-Juan Cheng(程红娟), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2019, 28(12): 127701.
[9] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[10] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[11] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[12] Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field
Qian Li(李潜), Dun-Hui Wang(王敦辉), Qing-Qi Cao(曹庆琪), You-Wei Du(都有为). Chin. Phys. B, 2017, 26(9): 097502.
[13] Electrical control of magnetism in oxides
Cheng Song(宋成), Bin Cui(崔彬), Jingjing Peng(彭晶晶), Haijun Mao(毛海军), Feng Pan(潘峰). Chin. Phys. B, 2016, 25(6): 067502.
[14] Dielectric and piezoelectric properties of (110) oriented Pb(Zr1-xTix)O3 thin films
Jian-Hua Qiu(邱建华), Zhi-Hui Chen(陈智慧), Xiu-Qin Wang(王秀琴), Ning-Yi Yuan(袁宁一), Jian-Ning Ding(丁建宁). Chin. Phys. B, 2016, 25(5): 057701.
[15] Microwave dielectric properties of Nextel-440 fiber fabrics with pyrolytic carbon coatings in the temperature range from room temperature to 700 ℃
Song Hui-Hui (宋荟荟), Zhou Wan-Cheng (周万城), Luo Fa (罗发), Qing Yu-Chang (卿玉长), Chen Ma-Lin (陈马林). Chin. Phys. B, 2015, 24(8): 088107.
No Suggested Reading articles found!