Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056109    DOI: 10.1088/1674-1056/abf03b
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Corrosion behavior of high-level waste container materials Ti and Ti-Pd alloy under long-term gamma irradiation in Beishan groundwater

Qianglin Wei(魏强林)1,2, Yuhong Li(李玉红)1,†, Yanliang Huang(黄彦良)3, Dongyan Yang(杨冬燕)1, Bo Yang(杨波)2, and Yibao Liu(刘义保)2,‡
1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China;
2 State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China;
3 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Abstract  Titanium and titanium-palladium alloys are important potential materials for nuclear waste container, which will endure both intense γ-irradiation and groundwater erosion. Therefore, it is very important to investigate the corrosion behavior of the container materials. In this research, the cumulative dose effect of TA8-1 type titanium-palladium alloy (TA8-1) and TA2-type pure titanium (TA2) under γ-irradiation was studied based on the geological disposal of nuclear wastes. The irradiation experiments were performed at room temperature using 60Co gamma sources with a 5.0-kGy·h-1 intensity for 40, 80 or 160 days, respectively. The pH value and conductivity of Beishan groundwater were investigated. The results showed that the pH value changed from alkaline (8.22) to acidic (2.46 for TA8-1 and 2.44 for TA2), while the un-irradiated solution remained alkaline (8.17 for TA8-1 and 8.20 for TA2) after 160 days. With the increase of irradiation dose, the conductivity increases rapidly and then tends to become stable, which indicates that the titanium dioxide corrosion layer formed on the surface of the sample surface effectively prevents further corrosion. Meanwhile, XRD and SEM-EDS analysis results show that the main components of corrosion products are TiO2 and TiO. The titanium on the surface of the sample is oxidized, resulting in slight uneven local corrosion. The results show that TA8-1 and TA2 are suitable to be used as candidate materials for high-level waste (HLW) disposal containers due to their excellent performance under long-term and high-dose irradiation corrosion.
Keywords:  γ-irradiation      corrosion      high-level waste      container material  
Received:  21 December 2020      Revised:  23 January 2021      Accepted manuscript online:  19 March 2021
PACS:  81.40.Wx (Radiation treatment)  
  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51471160, 11775102, and 11965001) and the Fundamental Research Funds for the Central Universities, China (Lanzhou University, Grant No. lzujbky-2018-19).
Corresponding Authors:  Yuhong Li, Yibao Liu     E-mail:  liyuhong@lzu.edu.cn;ybliu@ecut.edu.cn

Cite this article: 

Qianglin Wei(魏强林), Yuhong Li(李玉红), Yanliang Huang(黄彦良), Dongyan Yang(杨冬燕), Bo Yang(杨波), and Yibao Liu(刘义保) Corrosion behavior of high-level waste container materials Ti and Ti-Pd alloy under long-term gamma irradiation in Beishan groundwater 2021 Chin. Phys. B 30 056109

[1] World Nuclear Association 2016 Storage and Disposal Options, Radioactive Waste Management Appendix 2
[2] Wang J, Chen L, Su R and Zhao X 2018 J. Rock Mech. Geotech. Eng. 10 411
[3] Bennett D G and Gens R 2008 J. Nucl. Mater. 379 1
[4] Zhang Q, Zheng M, Huang Y L, Kunte H J, Wang X, Liu Y and Zheng C 2019 Sci. Rep. 9 1
[5] Norrfors K K, Björkbacka Å, Kessler A, Wold S and Jonsson M 2018 Rad. Phys. Chem. 144 8
[6] Qin Z, Daljeet R, Ai M, Farhangi N, Noël J J, Ramamurthy S, Shoesmith D, King F and Keech P 2017 Corros. Eng. Sci. Technol. 52 45
[7] Sano Y, Ambai H, Takeuchi M, Iijima S and Uchida N 2017 J. Mater. Sci. Technol. 493 200
[8] Raiman S S and Was G S 2017 J. Mater. Sci. Technol. 493 207
[9] King F, Kolář M and Keech P G 2014 Corros. Eng. Sci. Technol. 49 45
[10] Frankel G S, Vienna J D, Lian J, Scully J R, Gin S, Ryan J V, Wang J, Kim S H, Windl W and Du J 2018 npj Mat. Deg. 2 1
[11] Frankel G S, Vienna J and Lian J 2017 npj Mat. Deg. 1 1
[12] Feng X, Lei J, Gu H and Zhou S 2019 Chin. Phys. B 28 26802
[13] Raj B and Mudali U K 2016 Progress in Nuclear Energy 48 283
[14] Science C, Britain G and Pre P 1990 Corros. Sci. 31 275
[15] Robin A, Rosa J L and Sandim H R Z 2001 J. Appl. Electrochem. 31 455
[16] Brossia C S and Cragnolino G A 2004 Corros. Sci. 46 1693
[17] Michaelis A, Kudelka S and Schultze J W 1998 Electrochimica Acta. 43 119
[18] Ningshen S, Mudali U K, Mukherjee P, Sarkar A, Barat P, Padhy N and Raj B 2008 Corros. Sci. 50 2124
[19] Hua F, Mon K, Pasupathi P, Gordon G and Shoesmith D 2005 Corrosion 61 987
[20] Cheng C, Wang X, Sun J X, Cao C M, Ma Y L and Liu Y X 2018 Acta Phys. Sin. 67 197101 (in Chinese)
[21] Bignon Q, Martin F, Auzoux Q, Miserque F, Tabarant M, Latu-Romain L and Wouters Y 2019 Corros. Sci. 150 32
[22] Rodrigues D C, Valderrama P, Wilson T G, Palmer K, Thomas A, Sridhar S, Adapalli A, Burbano M and Wadhwani C 2013 Materials 6 5258
[23] King F, Lilja C, Pedersen K, Pitkänen P and Vähänen M S Supply Company Report SKB TR-10-67, Posiva Oy Report POSIVA 2011
[24] Marsh G P and Taylor K J 1988 Corros. Sci. 28 289
[25] Liu C, Wang J, Zhang Z and Han E H 2017 Corros. Eng. Sci. Tech. 52 136
[26] Liu C, Wang J, Zhang Z, Han E, Liu W, Liang D, Yang Z and Cao X 2018 J. Mat. Sci. Tech. 34 2131
[27] Shoesmith D W, Ikeda B M and King F 1991 MRS Proc. 257
[28] Padovani C, King F, Lilja C, Féron D, Necib S, Crusset D, Deydier V, Diomidis N, Gaggiano R, Ahn T, Keech P G, Macdonald D D, Asano H, Smart N, Hall D S, Hänninen H, Engelberg D, Noël J J and Shoesmith D W 2017 Corros. Eng. Sci. Technol. 52 227
[29] Björkbacka Å, Hosseinpour S, Johnson M, Leygraf C and Jonsson M 2013 Radiat. Phys. Chem. 92 80
[30] Ollila K 1992 J. Nucl. Mater. 190 70
[31] Liu X and Millero F J 1999 Geochim. Cosmochim. Acta 63 3487
[32] Ningshen S, Mudali U K, Mukherjee P, Barat P and Raj B 2011 J. Nucl. Mater. 408 1
[33] Yamada R, Nagaishi R, Hatano and Yoshida Y Z 2008 Int. J. Hydrogen Energy. 33 929
[34] Zhang QC, Zheng M and Huang Y L 2017 Corros. Eng. Sci. Technol. 52 425
[35] Zheng M, Zhang Q C and Huang Y L 2016 J. Chin. Soc. Corros. Prot. 36 185 (in Chinese)
[36] Bishay A M 1962 J. Am. Cera. Soc. 45 8
[37] Mal D, Puspalata R and Rangarajan S and Velmurugan S 2017 Radiat. Phys. Chem. 138 1
[38] Das S 2013 J. Chem. 66 522
[39] Noël J J, Ebrahimi N and Shoesmith D W 2017 Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Washington: Princeton) 192
[40] Gray W J and McVay G L 1985 89 257
[41] Václav Č, Mú V, Pospíšil M, Čba V and Múčka V 2012 Adv. Nucl. Fuel. Tech. 27
[42] Macdonald D 1992 J. Electrochem. Soc. 12 34
[43] Noël J J, Ebrahimi N and Shoesmith D W 2018 Elsevier
[44] Shimogori K, Sato H, Tomari H and Ooki A 1976 in: Williams J C and Belov A F (edt.) Titanium and Titanium Alloys (New York: Plenum Press) p. 881
[45] Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira M E, Aab C, de Coss R and Oskam G 2008 Nanotechnology 19 145605
[46] Thamaphat K, Limsuwan P and Ngotawornchai B 2008 Kasetsart J. Nat. Sci. 361 357
[47] Nelson F S, Westerman J L and Gerber R E 1984 Mater. Res. Soc. Symp. Proc. 26 121
[1] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[2] Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel
Fateme Abdi. Chin. Phys. B, 2021, 30(3): 038106.
[3] Effects of WC-Co reinforced Ni-based alloy by laser melting deposition: Wear resistance and corrosion resistance
Zhao-Zhen Huang(黄昭祯), Zhi-Chen Zhang(张志臣), Fan-Liang Tantai(澹台凡亮), Hong-Fang Tian(田洪芳), Zhen-Jie Gu(顾振杰), Tao Xi(郗涛), Zhu Qian(钱铸), and Yan Fang(方艳). Chin. Phys. B, 2021, 30(1): 016802.
[4] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[5] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[6] Effect of scanning speeds on electrochemical corrosion resistance of laser cladding TC4 alloy
Xiaotian Feng(冯晓甜), Jianbo Lei(雷剑波), Hong Gu(顾宏), Shengfeng Zhou(周圣丰). Chin. Phys. B, 2019, 28(2): 026802.
[7] Influences of substrate temperature on microstructure and corrosion behavior of APS Ni50Ti25Al25 inter-metallic coating
Sh Khandanjou, M Ghoranneviss, Sh Saviz, M Reza Afshar. Chin. Phys. B, 2018, 27(2): 028104.
[8] Hot corrosion behavior of the spray-formed nickel-based superalloy
Min Xia(夏敏), Tian-Fu Gu(谷天赋), Chong-Lin Jia(贾崇林), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2016, 25(12): 128103.
[9] Improvement in coercivity,thermal stability,and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition
Beibei Zhou(周贝贝), Xiangbin Li(李向斌), Xuejing Cao(曹学静), Gaolin Yan(严高林), Aru Yan(闫阿儒). Chin. Phys. B, 2016, 25(11): 117504.
[10] Synthesis and performance of Zn-Ni-P thin films
V. Soare, M. Burada, I. Constantin, M. Ghita, V. Constantin, F. Miculescu, A. M. Popescu. Chin. Phys. B, 2015, 24(3): 036101.
[11] Surface morphology and electrochemical characterization of electrodeposited Ni–Mo nanocomposites as cathodes for hydrogen evolution
Elhachmi Guettaf Temam, Hachemi Ben Temam, Said Benramache. Chin. Phys. B, 2015, 24(10): 108202.
[12] Corrosion related properties of iron (100) surface in liquid lead and bismuth environments:A first-principles study
Song Chi (宋驰), Li Dong-Dong (李冬冬), Xu Yi-Chun (许依春), Pan Bi-Cai (潘必才), Liu Chang-Song (刘长松), Wang Zhi-Guang (王志光). Chin. Phys. B, 2014, 23(5): 056801.
[13] Preparation of biomedical Ag incorporated hydroxyapatite/titania coatings on Ti6Al4V alloy by plasma electrolytic oxidation
Zhou Lan (周澜), Lü Guo-Hua (吕国华), Mao Fei-Fei (毛菲菲), Yang Si-Ze (杨思泽). Chin. Phys. B, 2014, 23(3): 035205.
[14] Improvement of fabrication and characterization methods for micromechanical disk resonators
Zhao Hui (赵晖), Luo Wei (骆伟), Zheng Hai-Yang (郑海洋), Yang Jin-Ling (杨晋玲), Yang Fu-Hua (杨富华). Chin. Phys. B, 2012, 21(10): 100702.
[15] Properties of TiN coating on 45# steel for inner surface modification by grid-enhanced plasma source ion implantation method
Zhang Gu-Ling (张谷令), Wang Jiu-Li (王久丽), Liu Yuan-Fu (刘元富), Liu Chi-Zi (刘赤子), Yang Si-Ze (杨思泽). Chin. Phys. B, 2004, 13(8): 1309-1314.
No Suggested Reading articles found!