INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Impact of Al addition on the formation of Ni germanosilicide layers under different temperature annealing |
Xiao-Ran Meng(孟骁然)1,2, Yun-Xia Ping(平云霞)1, Wen-Jie Yu(俞文杰)2, Zhong-Ying Xue(薛忠营)2, Xing Wei(魏星)2, Miao Zhang(张苗)2, Zeng-Feng Di(狄增峰)2, Bo Zhang(张波)2, Qing-Tai Zhao(赵清太)3 |
1 Shanghai University of Engineering Science, Shanghai 201600, China; 2 State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 3 Peter Grünberg Institute 9 (PGI 9-IT), and JARA-Fundamentals of Future Information Technology, Forschungszentrum Juelich, Juelich 52425, Germany |
|
|
Abstract Solid reactions between Ni and relaxed Si0.7Ge0.3 substrate were systematically investigated with different Al interlayer thicknesses. The morphology, composition, and micro-structure of the Ni germanosilicide layers were analyzed with different annealing temperatures in the appearance of Al. The germanosilicide layers were characterized by Rutherford backscattering spectrometry, cross-section transmission electron microscopy, scan transmission electron microscopy, and secondary ion mass spectroscopy. It was shown that the incorporation of Al improved the surface and interface morphology of the germanosilicide layers, enhanced the thermal stabilities, and retarded the Ni-rich germanosilicide phase to mono germanosilicide phase. With increasing annealing temperature, Al atoms distributed from the Ni/Si0.7Ge0.3 interface to the total layer of Ni2Si0.7Ge0.3, and finally accumulated at the surface of NiSi0.7Ge0.3. We found that under the assistance of Al atoms, the best quality Ni germanosilicide layer was achieved by annealing at 700 ℃ in the case of 3 nm Al.
|
Received: 17 March 2017
Revised: 21 May 2017
Accepted manuscript online:
|
PACS:
|
85.30.Kk
|
(Junction diodes)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Hi
|
(Surface barrier, boundary, and point contact devices)
|
|
Fund: Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1418300) and the National Natural Science Foundation of China (Grant Nos. 61604094 and 61306126). |
Corresponding Authors:
Yun-Xia Ping, Bo Zhang
E-mail: xyping@sues.edu.cn;bozhang@mail.sim.ac.cn
|
Cite this article:
Xiao-Ran Meng(孟骁然), Yun-Xia Ping(平云霞), Wen-Jie Yu(俞文杰), Zhong-Ying Xue(薛忠营), Xing Wei(魏星), Miao Zhang(张苗), Zeng-Feng Di(狄增峰), Bo Zhang(张波), Qing-Tai Zhao(赵清太) Impact of Al addition on the formation of Ni germanosilicide layers under different temperature annealing 2017 Chin. Phys. B 26 098503
|
[1] |
Zhang S L and Östling M 2013 Criti. Rev. Solid State 28 1
|
[2] |
Lavoie C, d'Heurle F M, Detavernier C and Cabral J C 2003 Microelectron. Eng. 70 144
|
[3] |
Luo J, Qiu Z, Zha C, Zhang Z, Wu D, Lu J, Åkerman J, Östling M, Hultman L and Zhang S L 2010 Appl. Phys. Lett. 96 031911
|
[4] |
Luo J, Qiu Z, Zha C, Zhang Z, Östling M and Zhang S L 2010 J. Vac. Sci. Technol. A 28 C1I1
|
[5] |
Zhang S L 2003 Microelectron. Eng. 70 174
|
[6] |
Li J, Hong Q Z, Mayer J W and Rathbun L 1990 J. Appl. Phys. 67 2506
|
[7] |
Liu J and Ozturk M C 2005 IEEE Trans. Electron Devices 52 1535
|
[8] |
Packan P, Akbar S, Armstrong M, Bergstrom D, Brazier M, Deshpande H, Dev K, Ding G, Ghani T, Golonzka O, Han W, He J, Heussner R, James R, Jopling J, Kenyon C, Lee S H, Liu M, Lodha S, Mattis B, Murthy A, Neiberg L, Neirynck J, Pae S, Parker C, Pipes L, Sebastian J, Seiple J, Sell B, Sharma A, Sivakumar S, Song B, Amour A St, Tone K, Troeger T, Weber C, Zhang K, Luo Y and Natarajan S 2009 IEDM Tech. Dig. 659
|
[9] |
Yu W, Zhang B, Zhao Q T, Hartmann J M, Buca D, Nichau A, Lupták R, Lopes J M, Lenk S, Luysberg M, Bourdelle K K, Wang X and Mantl S 2011 Solid State Electron. 62 85
|
[10] |
Jin L, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L, Chi D Z, Rahman M A, Osipowicz T and Tung C H 2005 J. Appl. Phys. 98 033520
|
[11] |
Jarmar T, Seger J, Ericson F, Mangelinck D, Smith U and Zhang S L 2002 J. Appl. Phys. 92 7193
|
[12] |
Pey K L, Choi W K, Chattopadhyay S, Zhao H B, Fitzgerald E A, Antoniadis D A and Lee P S 2002 J. Vac. Sci. Technol. A 20 1903
|
[13] |
Zhang B, Yu W, Zhao Q T, Buca D, Holländer B, Hartmann J M, Zhang M, Wang X and Mantl S 2011 Electrochem. Solid-State Lett. 14 H261
|
[14] |
Xu Y, Ru G, Jiang Y, Qu X and Li B 2009 Appl. Surf. Sci. 256 305
|
[15] |
Liu Q, Wang G, Guo Y, Ke X, Liu H, Zhao. C and Luo J 2015 Vacuum 111 114
|
[16] |
Jin L, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L and Tung C H 2005 J. Appl. Phys. 97 104917
|
[17] |
Setiawan Y, Lee P S, Pey K L, Wang X C, Lim G C and Tan B L 2007 Appl. Phys. Lett. 90 073108
|
[18] |
Hu C, Xu P, Fu C, Zhu Z, Gao X, Jamshidi A, Noroozi M, Radamson H, Wu D and Zhang S L 2012 Appl. Phys. Lett. 101 092101
|
[19] |
Zhang B, Yu W, Zhao Q T, Mussler G, Jin L, Buca D, Hollaender B, Zhang M, Wang X and Mantl S 2011 Appl. Phys. Lett. 98 252101
|
[20] |
Zhao Q T, Knoll L, Zhang B, Buca D, Hartmann J and Mantl S 2013 Microelectron. Engineering. 107 190
|
[21] |
Liu L, Jin L, Knoll L, Wirths S, Nichau A, Buca D, Mussler G, Holländer B, Xu D, Di Z, Zhang M, Zhao Q and Mantl S 2013 Appl. Phys. Lett. 103 231909
|
[22] |
Ping Y X, Wang M L, Meng X R, Hou C L, Yu W L, Xue Z Y, Wei X, Zhang M, Di Z F and Zhang B 2016 Acta Phys. Sin. 65 036801 (in Chinese)
|
[23] |
Sinha M, Lee R T P, Lohani A, Mhaisalkar S, Chor E F and Yeo Y C 2009 J. Electrochem. Soc. 156 233
|
[24] |
Liu L J, Jin L, Knoll L, Wirths S, Buca D, Mussler G, Hollaender B, Xu D W, Di Z F, Zhang M, Mantl S and Zhao Q T 2015 Microelectron. Eng. 137 88
|
[25] |
Doolittle L 1985 Nucl. Inst. Meth. B 9 344
|
[26] |
Mogilatenko A, Beddies G, Falke M, Hausler I and Neumann W 2012 J. Appl. Phys. 111 103512
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|