Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 098503    DOI: 10.1088/1674-1056/26/9/098503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Impact of Al addition on the formation of Ni germanosilicide layers under different temperature annealing

Xiao-Ran Meng(孟骁然)1,2, Yun-Xia Ping(平云霞)1, Wen-Jie Yu(俞文杰)2, Zhong-Ying Xue(薛忠营)2, Xing Wei(魏星)2, Miao Zhang(张苗)2, Zeng-Feng Di(狄增峰)2, Bo Zhang(张波)2, Qing-Tai Zhao(赵清太)3
1 Shanghai University of Engineering Science, Shanghai 201600, China;
2 State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
3 Peter Grünberg Institute 9 (PGI 9-IT), and JARA-Fundamentals of Future Information Technology, Forschungszentrum Juelich, Juelich 52425, Germany
Abstract  Solid reactions between Ni and relaxed Si0.7Ge0.3 substrate were systematically investigated with different Al interlayer thicknesses. The morphology, composition, and micro-structure of the Ni germanosilicide layers were analyzed with different annealing temperatures in the appearance of Al. The germanosilicide layers were characterized by Rutherford backscattering spectrometry, cross-section transmission electron microscopy, scan transmission electron microscopy, and secondary ion mass spectroscopy. It was shown that the incorporation of Al improved the surface and interface morphology of the germanosilicide layers, enhanced the thermal stabilities, and retarded the Ni-rich germanosilicide phase to mono germanosilicide phase. With increasing annealing temperature, Al atoms distributed from the Ni/Si0.7Ge0.3 interface to the total layer of Ni2Si0.7Ge0.3, and finally accumulated at the surface of NiSi0.7Ge0.3. We found that under the assistance of Al atoms, the best quality Ni germanosilicide layer was achieved by annealing at 700 ℃ in the case of 3 nm Al.
Keywords:  germanosilicide      Al      Ni  
Received:  17 March 2017      Revised:  21 May 2017      Accepted manuscript online: 
PACS:  85.30.Kk (Junction diodes)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Hi (Surface barrier, boundary, and point contact devices)  
Fund: Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1418300) and the National Natural Science Foundation of China (Grant Nos. 61604094 and 61306126).
Corresponding Authors:  Yun-Xia Ping, Bo Zhang     E-mail:  xyping@sues.edu.cn;bozhang@mail.sim.ac.cn

Cite this article: 

Xiao-Ran Meng(孟骁然), Yun-Xia Ping(平云霞), Wen-Jie Yu(俞文杰), Zhong-Ying Xue(薛忠营), Xing Wei(魏星), Miao Zhang(张苗), Zeng-Feng Di(狄增峰), Bo Zhang(张波), Qing-Tai Zhao(赵清太) Impact of Al addition on the formation of Ni germanosilicide layers under different temperature annealing 2017 Chin. Phys. B 26 098503

[1] Zhang S L and Östling M 2013 Criti. Rev. Solid State 28 1
[2] Lavoie C, d'Heurle F M, Detavernier C and Cabral J C 2003 Microelectron. Eng. 70 144
[3] Luo J, Qiu Z, Zha C, Zhang Z, Wu D, Lu J, Åkerman J, Östling M, Hultman L and Zhang S L 2010 Appl. Phys. Lett. 96 031911
[4] Luo J, Qiu Z, Zha C, Zhang Z, Östling M and Zhang S L 2010 J. Vac. Sci. Technol. A 28 C1I1
[5] Zhang S L 2003 Microelectron. Eng. 70 174
[6] Li J, Hong Q Z, Mayer J W and Rathbun L 1990 J. Appl. Phys. 67 2506
[7] Liu J and Ozturk M C 2005 IEEE Trans. Electron Devices 52 1535
[8] Packan P, Akbar S, Armstrong M, Bergstrom D, Brazier M, Deshpande H, Dev K, Ding G, Ghani T, Golonzka O, Han W, He J, Heussner R, James R, Jopling J, Kenyon C, Lee S H, Liu M, Lodha S, Mattis B, Murthy A, Neiberg L, Neirynck J, Pae S, Parker C, Pipes L, Sebastian J, Seiple J, Sell B, Sharma A, Sivakumar S, Song B, Amour A St, Tone K, Troeger T, Weber C, Zhang K, Luo Y and Natarajan S 2009 IEDM Tech. Dig. 659
[9] Yu W, Zhang B, Zhao Q T, Hartmann J M, Buca D, Nichau A, Lupták R, Lopes J M, Lenk S, Luysberg M, Bourdelle K K, Wang X and Mantl S 2011 Solid State Electron. 62 85
[10] Jin L, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L, Chi D Z, Rahman M A, Osipowicz T and Tung C H 2005 J. Appl. Phys. 98 033520
[11] Jarmar T, Seger J, Ericson F, Mangelinck D, Smith U and Zhang S L 2002 J. Appl. Phys. 92 7193
[12] Pey K L, Choi W K, Chattopadhyay S, Zhao H B, Fitzgerald E A, Antoniadis D A and Lee P S 2002 J. Vac. Sci. Technol. A 20 1903
[13] Zhang B, Yu W, Zhao Q T, Buca D, Holländer B, Hartmann J M, Zhang M, Wang X and Mantl S 2011 Electrochem. Solid-State Lett. 14 H261
[14] Xu Y, Ru G, Jiang Y, Qu X and Li B 2009 Appl. Surf. Sci. 256 305
[15] Liu Q, Wang G, Guo Y, Ke X, Liu H, Zhao. C and Luo J 2015 Vacuum 111 114
[16] Jin L, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L and Tung C H 2005 J. Appl. Phys. 97 104917
[17] Setiawan Y, Lee P S, Pey K L, Wang X C, Lim G C and Tan B L 2007 Appl. Phys. Lett. 90 073108
[18] Hu C, Xu P, Fu C, Zhu Z, Gao X, Jamshidi A, Noroozi M, Radamson H, Wu D and Zhang S L 2012 Appl. Phys. Lett. 101 092101
[19] Zhang B, Yu W, Zhao Q T, Mussler G, Jin L, Buca D, Hollaender B, Zhang M, Wang X and Mantl S 2011 Appl. Phys. Lett. 98 252101
[20] Zhao Q T, Knoll L, Zhang B, Buca D, Hartmann J and Mantl S 2013 Microelectron. Engineering. 107 190
[21] Liu L, Jin L, Knoll L, Wirths S, Nichau A, Buca D, Mussler G, Holländer B, Xu D, Di Z, Zhang M, Zhao Q and Mantl S 2013 Appl. Phys. Lett. 103 231909
[22] Ping Y X, Wang M L, Meng X R, Hou C L, Yu W L, Xue Z Y, Wei X, Zhang M, Di Z F and Zhang B 2016 Acta Phys. Sin. 65 036801 (in Chinese)
[23] Sinha M, Lee R T P, Lohani A, Mhaisalkar S, Chor E F and Yeo Y C 2009 J. Electrochem. Soc. 156 233
[24] Liu L J, Jin L, Knoll L, Wirths S, Buca D, Mussler G, Hollaender B, Xu D W, Di Z F, Zhang M, Mantl S and Zhao Q T 2015 Microelectron. Eng. 137 88
[25] Doolittle L 1985 Nucl. Inst. Meth. B 9 344
[26] Mogilatenko A, Beddies G, Falke M, Hausler I and Neumann W 2012 J. Appl. Phys. 111 103512
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[5] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[6] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[7] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[8] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[9] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[10] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[11] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[12] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[13] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[14] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[15] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
No Suggested Reading articles found!