Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 080701    DOI: 10.1088/1674-1056/26/8/080701
GENERAL Prev   Next  

Raman sideband cooling of rubidium atoms in optical lattice

Chun-Hua Wei(魏春华)1,2, Shu-Hua Yan(颜树华)1,2
1 College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China;
2 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China

We develop a simple and practical scheme to apply sideband cooling to a cloud of rubidium atoms. A sample containing 4×1070 87Rb is trapped in a far red detuned optical lattice. Through optimizing the relevant parameters, i.e., laser detuning, magnetic field, polarization, and duration time, a temperature around 1.5 μK and phase space density close to 1/500 are achieved. Compared with polarization gradient cooling, the temperature decreases by around one order of magnitude. This technique could be used in high precision measurement such as atomic clocks and atom interferometer. It could also serve as a precooling means before evaporation cooling in a dipole trap, and may be a promising method of achieving quantum degeneracy with purely optical means.

Keywords:  atom cooling      optical lattice      sideband cooling  
Received:  23 February 2017      Revised:  03 May 2017      Accepted manuscript online: 
PACS:  07.05.Fb (Design of experiments)  
  37.10.De (Atom cooling methods)  
  37.10.Jk (Atoms in optical lattices)  

Project supported by the National Natural Science Foundation of China (Grant No. 51275523), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134307110009), the Graduate Innovative Research Fund of Hunan Province, China (Grant No. CX20158015), and the Excellent Graduate Innovative Fund of National University of Defense Technology (NUDT) (Grant No. B150305).

Corresponding Authors:  Shu-Hua Yan     E-mail:
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华) Raman sideband cooling of rubidium atoms in optical lattice 2017 Chin. Phys. B 26 080701

[1] Lett P D, Watts R N, Westbrook C I, Phillips W D, Gould P L and Metcalf H J 1988 Phys. Rev. Lett. 61 169
[2] Cooper C J, Hillenbrand G, Rink J, Townsend C G, Zetie K and Foot C J 1994 Europhys. Lett. 28 39
[3] Dashevskaya E I, Nikitin E E, Voronin A I and Zembekov A A 1970 Can. J. Phys. 48 981.
[4] Kerman A J 2002 "Raman Sideband Cooling and Cold Atomic Collisions in Optical Lattices," Ph. D. Dissertation (Stanford University)
[5] Burnett K, Julienne P S and Suominen K A 1996 Phys. Rev. Lett. 77 1416
[6] Julienne P 1996 Journal of Research of the National Institute of Standards and Technology 101 487
[7] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
[8] Davidson N, Lee H J, Kasevich M and Chu S 1994 Phys. Rev. Lett. 72 3158
[9] Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S and Chu S 1991 Phys. Rev. Lett. 66 2297
[10] Reichel J, Morice O, Tino G M and Salomon C 1994 Europhys. Lett. 28 477
[11] Boiron D, Michaud A, Lemonde P, Castin Y, Salomon C, Weyers S, Szymaniec K, Cognet L and Clairon A 1996 Phys. Rev. A 53 R3734
[12] Boiron D, Trich C, Meacher D R, Verkerk P and Grynberg G 1995 Phys. Rev. A 52 R3425
[13] Ketterle W, Davis K B, Joffe M A, Martin A and Pritchard D E 1993 Phys. Rev. Lett. 70 2253
[14] Townsend C G, Edwards N H, Zetie K P, Cooper C J, Rink J and Foot C J 1996 Phys. Rev. A 53 1702
[15] Aspect A, Arimondo E, Kaiser R, Vansteenkiste N and Cohen-Tannoudji C 1988 Phys. Rev. Lett. 61 826
[16] Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J and Gould P 1995 Phys. Rev. Lett. 75 4011
[17] Mnoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A and Bouyer P 2011 Opt. Lett. 36 4128.
[18] Wolf S, Oliver S J and Weiss D S 2000 Phys. Rev. Lett. 85 4249
[19] Poulsen G, Miroshnychenko Y and Drewsen M 2012 Phys. Rev. A 86 051402
[20] Seck C M, Kokish M G, Dietrich M R and Odom B C 2016 Phys. Rev. A 93 053415
[21] Han D J, Wolf S, Oliver S, McCormick C, DePue M T and Weiss D S 2000 Phys. Rev. Lett. 85 724
[22] Grobner M, Weinmann P, Kirilov E and Nagerl H C 2017 Phys. Rev. A 95 033412
[23] Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T and Zwierlein M W 2015 Phys. Rev. Lett. 114 193001
[24] Parsons M F, Huber F, Mazurenko A, Chiu C S, Setiawan W, Wooley-Brown K, Blatt S and Greiner M 2015 Phys. Rev. Lett. 114 213002
[25] White J D and Scholten R E 2012 Rev. Sci. Instrum. 83 113104
[26] Takase K, Stockton J K and Kasevich M A 2007 Opt. Lett. 32 2617
[27] Kastberg A, Phillips W D, Rolston S L, Spreeuw R J C and Jessen P S 1995 Phys. Rev. Lett. 74 1542
[28] Wei C H, Yan S H, Yang J, Wang G C, Jia A A, Luo Y K and Hu Q Q 2017 Acta Phys. Sin. 66 010701 (in Chinese)
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[7] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[8] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[9] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[10] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[11] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[12] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[13] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[14] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[15] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
No Suggested Reading articles found!