Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 076104    DOI: 10.1088/1674-1056/26/7/076104
SPECIAL TOPIC—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Electronic structure & yield strength prediction for dislocation–Mo complex in the γ phase of nickel-based superalloys

Feng-Hua Liu(刘凤华)1, Chong-Yu Wang(王崇愚)1,2
1 Central Iron and Steel Research Institute, Beijing 100081, China;
2 Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  

Molybenum's effects when added in the γ phase of nickel-based superalloys were studied using the lattice Green's function multiscale method. The electronic structure of the dislocation–Mo complex was analyzed and hybridization was found to contribute to the strengthening. Moreover, by combining the interaction energies calculated from two scales, the yield stress was theoretically predicted at 0 K and finite temperature.

Keywords:  electronic structure      dislocation–      Mo complex      critical resolved shear stress  
Received:  08 May 2017      Revised:  08 June 2017      Accepted manuscript online: 
PACS:  61.72.Yx (Interaction between different crystal defects; gettering effect)  
  61.82.Bg (Metals and alloys)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: 

Project supported by Beijing Municipality Science&Technology Commission,China (Grant No.D161100002416001).

Corresponding Authors:  Chong-Yu Wang     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Feng-Hua Liu(刘凤华), Chong-Yu Wang(王崇愚) Electronic structure & yield strength prediction for dislocation–Mo complex in the γ phase of nickel-based superalloys 2017 Chin. Phys. B 26 076104

[1] Reed R C 2006 The Superalloys:Fundamentals and Applications (New York:Cambridge University Press)
[2] Tin S and Pollock T M 2003 Mater. Sci. Eng. A 348 111
[3] Fuchs G E 2001 Mater. Sci. Eng. A 300 52
[4] Mackay R A, Gabb T P, Smialek J L and Nathal M V 2010 JOM 62 48
[5] Ru Y, Li S, Pei Y, Zhou J, Gong S and Xu H 2015 J. Alloys Compd. 662 431
[6] Rettig R, Matuszewski K, Müller A, Helmer H E, Ritter N C and Singer R F 2016 Development of a Low-density Rhenium-free Single Crystal Nickel-based Superalloy by Application of Numerical Multi-criteria Optimization Using Thermodynamic Calculations. International Symposium on Superalloys, Seven Springs, Pennsylvania, USA
[7] Bagot P A J, Silk O B W, Douglas J O, Pedrazzini S, Crudden D J, Martin T L, Hardy M C, Moody M P and Reed R C 2017 Acta Mater. 125 156
[8] Peng Z, Povstugar I, Matuszewski K, Rettig R, Singer R, Kostka A, Choi P P and Raabe D 2015 Scr. Mater. 101 44
[9] Huang M, Cheng Z, Xiong J, Li J, Hu J, Liu Z and Zhu J 2014 Acta Mater. 76 294
[10] Zhang J X, Harada H, Ro Y, Koizumi Y and Kobayashi T 2008 Acta Mater. 56 2975
[11] Yu X X and Wang C Y 2009 Acta Mater. 57 5914
[12] Zhang X, Wang C Y and Lu G 2008 Phys. Rev. B 78
[13] Ghazisaeidi M and Trinkle D R 2012 Acta Mater. 60 1287
[14] Woodward C, Trinkle D R, Jr H L and Olmsted D L 2008 Phys. Rev. Lett. 100
[15] Liu F H and Wang C Y 2017 Rsc Adv. 7 19124
[16] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[17] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[18] Blöchl P E 1994 Phys. Rev. B 50 17953
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[22] Fleischmann E, Miller M K, Affeldt E and Glatzel U 2015 Acta Mater. 87 350
[23] Heckl A, Neumeier S, Göken M and Singer R F 2011 Mater. Sci. Eng. A 528 3435
[24] Butt M Z and Feltham P 1993 Journal of Materials Science 28 2557
[25] Argon A S 2008 Strengthening Mechanisms in Crystal Plasticity (New York:Oxford University Press)
[26] Fleisgher R L 1961 Acta Metall 9 996
[27] Labusch R 1972 Acta Metall 20 917
[28] Labusch R 2006 Phys. Status Solidi 41 659
[29] Leyson G P, Curtin W A, Jr H L and Woodward C F 2010 Nat. Mater. 9 750
[30] Barnett D M, Asaro R J, Gavazza S D, Bacon D J and Scattergood R O 2001 J. Phys. F:Metal Phys. 2 854
[31] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[32] Birch F 1947 Phys. Rev. 71 809
[33] Söderlind P, Eriksson O, Wills J M and Boring A M 1993 Phys. Rev. B 48 5844
[34] Kim D E, Shang S L and Liu Z K 2009 Comput. Mater. Sci. 47 254
[35] Giessen E V D and Needleman A 1995 Modelling & Simulation in Materials Science & Engineering 3 689
[36] Vannarat S, Sluiter M H F and Kawazoe Y 2001 Phys. Rev. B 64 224203
[37] Wu Z, Bei H, Pharr G M and George E P 2014 Acta Mater. 81 428
[38] Mishima Y, Ochiai S, Hamao N, Yodogawa M and Suzuki T 1986 Transactions of the Japan Institute of Metals 27 656
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[5] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[12] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!