Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067702    DOI: 10.1088/1674-1056/26/6/067702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved photovoltaic effects in Mn-doped BiFeO3 ferroelectric thin films through band gap engineering

Tang-Liu Yan(阎堂柳)1,3,4, Bin Chen(陈斌)3,4, Gang Liu(刘钢)3,4, Rui-Peng Niu(牛瑞鹏)2, Jie Shang(尚杰)3,4, Shuang Gao(高双)3,4, Wu-Hong Xue(薛武红)3,4, Jing Jin(金晶)1, Jiu-Ru Yang(杨九如)2, Run-Wei Li(李润伟)3,4
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
2 Electrical Engineering College, Heilongjiang University, Harbin 150080, China;
3 Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
4 Zhejiang Provincial Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  

As a low-bandgap ferroelectric material, BiFeO3 has gained wide attention for the potential photovoltaic applications, since its photovoltaic effect in visible light range was reported in 2009. In the present work, Bi(Fe, Mn)O3 thin films are fabricated by pulsed laser deposition method, and the effects of Mn doping on the microstructure, optical, leakage, ferroelectric and photovoltaic characteristics of Bi(Fe, Mn)O3 thin films are systematically investigated. The x-ray diffraction data indicate that Bi(Fe, Mn)O3 thin films each have a rhombohedrally distorted perovskite structure. From the light absorption results, it follows that the band gap of Bi(Fe, Mn)O3 thin films can be tuned by doping different amounts of Mn content. More importantly, photovoltaic measurement demonstrates that the short-circuit photocurrent density and the open-circuit voltage can both be remarkably improved through doping an appropriate amount of Mn content, leading to the fascinating fact that the maximum power output of ITO/BiFe0.7Mn0.3O3/Nb-STO capacitor is about 175 times higher than that of ITO/BiFeO3/Nb-STO capacitor. The improvement of photovoltaic response in Bi(Fe, Mn)O3 thin film can be reasonably explained as being due to absorbing more visible light through bandgap engineering and maintaining the ferroelectric property at the same time.

Keywords:  band gap engineering      BiFeO3      Mn doping      ferroelectric      photovoltaic effect  
Received:  11 January 2017      Revised:  25 February 2017      Accepted manuscript online: 
PACS:  77.55.fp (Other ferroelectric films)  
  42.70.Qs (Photonic bandgap materials)  
  77.90.+k (Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)  
  85.60.-q (Optoelectronic devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274322, 51402318, 61404080, and 61675066), the National Key Technology Research and Development Program of China (Grant No. 2016YFA0201102), and the China Postdoctoral Science Foundation (Grant No. 2016LH0050).

Corresponding Authors:  Bin Chen, Jing Jin, Jiu-Ru Yang     E-mail:  chenbin@nimte.ac.cn;jjin@shu.edu.cn;yangjr@hlju.edu.cn

Cite this article: 

Tang-Liu Yan(阎堂柳), Bin Chen(陈斌), Gang Liu(刘钢), Rui-Peng Niu(牛瑞鹏), Jie Shang(尚杰), Shuang Gao(高双), Wu-Hong Xue(薛武红), Jing Jin(金晶), Jiu-Ru Yang(杨九如), Run-Wei Li(李润伟) Improved photovoltaic effects in Mn-doped BiFeO3 ferroelectric thin films through band gap engineering 2017 Chin. Phys. B 26 067702

[1] Choi T, Lee S, Choi Y J, Kiryukin V and Cheong S W 2009 Science 324 63
[2] Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W and Ramesh R 2010 Nat. Nanotechnol. 5 143
[3] Ji W, Yao K and Liang Y C. 2010 Adv. Mater. 22 1763
[4] Glass A M, Von der Linde D and Negran T J 1974 Appl. Phys. Lett. 25 233
[5] Arizmendi L 2004 Phys. Status Solidi A 201 253
[6] Glass A, Von der Linde D, Auston D and Negran T 1975 J. Electron. Mater. 4 915
[7] Carnicero J, Caballero O, Carrascosa M and Cabrera J 2004 Appl. Phys. B 79 351
[8] Kang B, Rhee B K, Joo G T, Lee S and Lim K S 2006 Opt. Commun. 266 203
[9] Ichiki M, Morikawa Y and Nakada T 2002 Jpn. J. Appl. Phys. 41 6993
[10] Ichiki M, Maeda R, Morikawa Y, Mabune Y, Nakada T and Nonaka K 2004 Appl. Phys. Lett. 84 395
[11] Spanier J E, Fridkin V M, Rappe A M, Akbashev A R, Polemi A, Qi Y B, Gu Z Q, Young S M, Hawley C J, Imbrenda D, Xiao G, Bennett-Jackson A L and Johnson C L 2016 Nat. Photon. 10 611
[12] Ji W, Yao K and Liang Y C 2010 Adv. Mater. 22 1763
[13] Luo B C, Chen C L, Fan F and Jin K X 2012 Chin. Phys. Lett. 29 018104
[14] Zhou Y E, Tan X Y, Yu B F, Liu L, Yuan S L and Jiao W H 2014 Chin. Phys. Lett. 31 037304
[15] Ji W, Yao K and Liang Y C 2011 Phys. Rev. B 84 094115
[16] Nechache R, Harnagea C, Licoccia S, Traversa E, Ruediger A, Pignolet A and Rosei F 2011 Appl. Phys. Lett. 98 202902
[17] Zhang G H, Wu H, Li G B, Huang Q Z, Yang C Y, Huang F Q, Liao F H and Lin J H 2013 Sci. Rep. 3 1265
[18] Grinberg I, West D V, Torres M, Gou G Y, Stein D M., Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E and Rappe A M 2013 Nature 503 509
[19] Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J and Rosei F 2014 Nat. Photon. 9 61
[20] Xu X S, Ihlefeld J F, Lee J H, Ezekoye O K, Vlahos E, Ramesh R, Gopalan V, Pan X Q, Schlom D G and Musfeldt J L 2010 Appl. Phys. Lett. 96 192901
[21] Béa H, Bibes M, Barthélémy A, Bouzehouane K, Khodan A, Contour J P, Fusil S, Wyczisk F, Forget A, Lebeugle D, Colson D and Viret M 2005 Appl. Phys. Lett. 88 062502
[22] Béa H, Bibes M, Fusil S, Bouzehouane K, Jacquet E, Rode K, Bencok P, and Barthélémy A 2006 Phys. Rev. B 74 020101(R)
[23] Wen Z, Hu G D, Fan S H, Yang C H, Wu W B, Zhou Y, Chen X M and Cui S G 2009 Thin Solid Films 517 4497
[24] Ding N F, Deng H M, Yang P X and Chu J H 2012 Mater. Lett. 82 71
[25] Singh S K, Ishiwara H, Sato K and Maruyama K 2007 J. Appl. Phys. 102 094109
[26] Béa M. Bibes A. Barthélémy H, Bouzehouane K, Jacquet E, Khodan A, Contour S, Fusil F, Wyczisk A, Forget J P, Lebeugle D, Colson D and Viret M 2005 Appl. Phys. Lett. 87 072508
[27] Alexe M, Scott J F, Curran C, Zakharov N D, Hesse D and Pignolet A 1998 Appl. Phys. Lett. 73 1592
[28] Kawae T, Terauchi Y, Tsuda H, Kumeda M and Morimoto A 2009 Appl. Phys. Lett. 94 112904
[29] Wei L J, Sun B, Zhao W X, Li H W and Chen P 2017 Appl. Surf. Sci. 393 325
[30] Wu J G, Wang J, Xiao D Q and Zhu J G 2011 Mater. Res. Bull. 46 2183
[31] Liu E K, Zhu B S and Luo J S 2011 The Physics of Semiconductors, 7th edn. (Beijing: Publishing House of Electronics Industry) p. 296
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[4] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[5] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[6] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[7] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[8] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[9] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[10] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[11] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[12] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[13] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[14] Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors
Yuan-Yuan Zhang(张元元), Xiao-Qing Sun(孙晓清), Jun-Shuai Chai(柴俊帅), Hao Xu(徐昊), Xue-Li Ma(马雪丽), Jin-Juan Xiang(项金娟), Kai Han(韩锴), Xiao-Lei Wang(王晓磊), and Wen-Wu Wang(王文武). Chin. Phys. B, 2021, 30(12): 127701.
[15] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
No Suggested Reading articles found!