CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improved photovoltaic effects in Mn-doped BiFeO3 ferroelectric thin films through band gap engineering |
Tang-Liu Yan(阎堂柳)1,3,4, Bin Chen(陈斌)3,4, Gang Liu(刘钢)3,4, Rui-Peng Niu(牛瑞鹏)2, Jie Shang(尚杰)3,4, Shuang Gao(高双)3,4, Wu-Hong Xue(薛武红)3,4, Jing Jin(金晶)1, Jiu-Ru Yang(杨九如)2, Run-Wei Li(李润伟)3,4 |
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
2 Electrical Engineering College, Heilongjiang University, Harbin 150080, China;
3 Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
4 Zhejiang Provincial Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
|
|
Abstract As a low-bandgap ferroelectric material, BiFeO3 has gained wide attention for the potential photovoltaic applications, since its photovoltaic effect in visible light range was reported in 2009. In the present work, Bi(Fe, Mn)O3 thin films are fabricated by pulsed laser deposition method, and the effects of Mn doping on the microstructure, optical, leakage, ferroelectric and photovoltaic characteristics of Bi(Fe, Mn)O3 thin films are systematically investigated. The x-ray diffraction data indicate that Bi(Fe, Mn)O3 thin films each have a rhombohedrally distorted perovskite structure. From the light absorption results, it follows that the band gap of Bi(Fe, Mn)O3 thin films can be tuned by doping different amounts of Mn content. More importantly, photovoltaic measurement demonstrates that the short-circuit photocurrent density and the open-circuit voltage can both be remarkably improved through doping an appropriate amount of Mn content, leading to the fascinating fact that the maximum power output of ITO/BiFe0.7Mn0.3O3/Nb-STO capacitor is about 175 times higher than that of ITO/BiFeO3/Nb-STO capacitor. The improvement of photovoltaic response in Bi(Fe, Mn)O3 thin film can be reasonably explained as being due to absorbing more visible light through bandgap engineering and maintaining the ferroelectric property at the same time.
|
Received: 11 January 2017
Revised: 25 February 2017
Accepted manuscript online:
|
PACS:
|
77.55.fp
|
(Other ferroelectric films)
|
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
77.90.+k
|
(Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)
|
|
85.60.-q
|
(Optoelectronic devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274322, 51402318, 61404080, and 61675066), the National Key Technology Research and Development Program of China (Grant No. 2016YFA0201102), and the China Postdoctoral Science Foundation (Grant No. 2016LH0050). |
Corresponding Authors:
Bin Chen, Jing Jin, Jiu-Ru Yang
E-mail: chenbin@nimte.ac.cn;jjin@shu.edu.cn;yangjr@hlju.edu.cn
|
Cite this article:
Tang-Liu Yan(阎堂柳), Bin Chen(陈斌), Gang Liu(刘钢), Rui-Peng Niu(牛瑞鹏), Jie Shang(尚杰), Shuang Gao(高双), Wu-Hong Xue(薛武红), Jing Jin(金晶), Jiu-Ru Yang(杨九如), Run-Wei Li(李润伟) Improved photovoltaic effects in Mn-doped BiFeO3 ferroelectric thin films through band gap engineering 2017 Chin. Phys. B 26 067702
|
[1] |
Choi T, Lee S, Choi Y J, Kiryukin V and Cheong S W 2009 Science 324 63
|
[2] |
Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W and Ramesh R 2010 Nat. Nanotechnol. 5 143
|
[3] |
Ji W, Yao K and Liang Y C. 2010 Adv. Mater. 22 1763
|
[4] |
Glass A M, Von der Linde D and Negran T J 1974 Appl. Phys. Lett. 25 233
|
[5] |
Arizmendi L 2004 Phys. Status Solidi A 201 253
|
[6] |
Glass A, Von der Linde D, Auston D and Negran T 1975 J. Electron. Mater. 4 915
|
[7] |
Carnicero J, Caballero O, Carrascosa M and Cabrera J 2004 Appl. Phys. B 79 351
|
[8] |
Kang B, Rhee B K, Joo G T, Lee S and Lim K S 2006 Opt. Commun. 266 203
|
[9] |
Ichiki M, Morikawa Y and Nakada T 2002 Jpn. J. Appl. Phys. 41 6993
|
[10] |
Ichiki M, Maeda R, Morikawa Y, Mabune Y, Nakada T and Nonaka K 2004 Appl. Phys. Lett. 84 395
|
[11] |
Spanier J E, Fridkin V M, Rappe A M, Akbashev A R, Polemi A, Qi Y B, Gu Z Q, Young S M, Hawley C J, Imbrenda D, Xiao G, Bennett-Jackson A L and Johnson C L 2016 Nat. Photon. 10 611
|
[12] |
Ji W, Yao K and Liang Y C 2010 Adv. Mater. 22 1763
|
[13] |
Luo B C, Chen C L, Fan F and Jin K X 2012 Chin. Phys. Lett. 29 018104
|
[14] |
Zhou Y E, Tan X Y, Yu B F, Liu L, Yuan S L and Jiao W H 2014 Chin. Phys. Lett. 31 037304
|
[15] |
Ji W, Yao K and Liang Y C 2011 Phys. Rev. B 84 094115
|
[16] |
Nechache R, Harnagea C, Licoccia S, Traversa E, Ruediger A, Pignolet A and Rosei F 2011 Appl. Phys. Lett. 98 202902
|
[17] |
Zhang G H, Wu H, Li G B, Huang Q Z, Yang C Y, Huang F Q, Liao F H and Lin J H 2013 Sci. Rep. 3 1265
|
[18] |
Grinberg I, West D V, Torres M, Gou G Y, Stein D M., Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E and Rappe A M 2013 Nature 503 509
|
[19] |
Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J and Rosei F 2014 Nat. Photon. 9 61
|
[20] |
Xu X S, Ihlefeld J F, Lee J H, Ezekoye O K, Vlahos E, Ramesh R, Gopalan V, Pan X Q, Schlom D G and Musfeldt J L 2010 Appl. Phys. Lett. 96 192901
|
[21] |
Béa H, Bibes M, Barthélémy A, Bouzehouane K, Khodan A, Contour J P, Fusil S, Wyczisk F, Forget A, Lebeugle D, Colson D and Viret M 2005 Appl. Phys. Lett. 88 062502
|
[22] |
Béa H, Bibes M, Fusil S, Bouzehouane K, Jacquet E, Rode K, Bencok P, and Barthélémy A 2006 Phys. Rev. B 74 020101(R)
|
[23] |
Wen Z, Hu G D, Fan S H, Yang C H, Wu W B, Zhou Y, Chen X M and Cui S G 2009 Thin Solid Films 517 4497
|
[24] |
Ding N F, Deng H M, Yang P X and Chu J H 2012 Mater. Lett. 82 71
|
[25] |
Singh S K, Ishiwara H, Sato K and Maruyama K 2007 J. Appl. Phys. 102 094109
|
[26] |
Béa M. Bibes A. Barthélémy H, Bouzehouane K, Jacquet E, Khodan A, Contour S, Fusil F, Wyczisk A, Forget J P, Lebeugle D, Colson D and Viret M 2005 Appl. Phys. Lett. 87 072508
|
[27] |
Alexe M, Scott J F, Curran C, Zakharov N D, Hesse D and Pignolet A 1998 Appl. Phys. Lett. 73 1592
|
[28] |
Kawae T, Terauchi Y, Tsuda H, Kumeda M and Morimoto A 2009 Appl. Phys. Lett. 94 112904
|
[29] |
Wei L J, Sun B, Zhao W X, Li H W and Chen P 2017 Appl. Surf. Sci. 393 325
|
[30] |
Wu J G, Wang J, Xiao D Q and Zhu J G 2011 Mater. Res. Bull. 46 2183
|
[31] |
Liu E K, Zhu B S and Luo J S 2011 The Physics of Semiconductors, 7th edn. (Beijing: Publishing House of Electronics Industry) p. 296
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|