Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 050302    DOI: 10.1088/1674-1056/26/5/050302
GENERAL Prev   Next  

Time-energy high-dimensional one-side device-independent quantum key distribution

Hai-Ze Bao(包海泽)1,2, Wan-Su Bao(鲍皖苏)1,2, Yang Wang(汪洋)1,2, Rui-Ke Chen(陈瑞柯)1,2, Hong-Xin Ma(马鸿鑫)1,2, Chun Zhou(周淳)1,2, Hong-Wei Li(李宏伟)1,2
1 Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

Compared with full device-independent quantum key distribution (DI-QKD), one-side device-independent QKD (1sDI-QKD) needs fewer requirements, which is much easier to meet. In this paper, by applying recently developed novel time-energy entropic uncertainty relations, we present a time-energy high-dimensional one-side device-independent quantum key distribution (HD-QKD) and provide the security proof against coherent attacks. Besides, we connect the security with the quantum steering. By numerical simulation, we obtain the secret key rate for Alice's different detection efficiencies. The results show that our protocol can performance much better than the original 1sDI-QKD. Furthermore, we clarify the relation among the secret key rate, Alice's detection efficiency, and the dispersion coefficient. Finally, we simply analyze its performance in the optical fiber channel.

Keywords:  time-energy      high-dimensional device-indepenedent quantum key distribution  
Received:  13 January 2017      Revised:  07 March 2017      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grants Nos. 11304397 and 61505261).

Corresponding Authors:  Wan-Su Bao     E-mail:  2010thzz@sina.com

Cite this article: 

Hai-Ze Bao(包海泽), Wan-Su Bao(鲍皖苏), Yang Wang(汪洋), Rui-Ke Chen(陈瑞柯), Hong-Xin Ma(马鸿鑫), Chun Zhou(周淳), Hong-Wei Li(李宏伟) Time-energy high-dimensional one-side device-independent quantum key distribution 2017 Chin. Phys. B 26 050302

[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2014 Nat. Photon. 8 595
[3] Makarov V and Hjelme D R J. Mod. Opt. 52 691
[4] Makarov V and Skaar J 2008 Quant. Inf. Comp. 8 0622
[5] Wiechers C, Lydersen L, Wittmann C, Else D, Skaar J, Marquardt C, Makarov V and Leuchs G 2011 New J. Phys. 13 013043
[6] Weier H, Krauss H, Rau M, Fürst M, Nauerth S and Weinfurter H 2011 New J. Phys. 13 073024
[7] Li H, Wang S, Huang J, Chen W, Yin Z, Li F, Zhou Z, Liu D, Zhang Y, Guo G, Bao W and Han Z 2011 Phys. Rev. A 84 062308
[8] Bennett C H and Brassard G 1984 in Proceedings IEEE International Conference on Computers, Systems and Signal Processing, 1984 Bangalore, India, pp. 175-179
[9] Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
[10] Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
[11] Wang S, Chen W, Yin Z Q, et al. 2014 Opt. Express 22 21739
[12] Wang S, Chen W, Yin Z Q, Zhang Y, Zhang T, Li H W, Xu F X, Zhou Z, Yang Y, Huang D J, Zhang L J, Li F Y, Liu D, Wang Y G, Guo G C and Han Z F 2010 Opt. Lett. 35 2454
[13] Li F Y, Wang D, Wang S, Li M, Yin Z Q, Li H W, Chen W and Han Z F 2014 Chin. Phys. B 23 124201
[14] Garapo K, Mafu M and Petruccione F 2016 Chin. Phys. B 25 070303
[15] Gu Y B, Bao W S, Wang Y and Chou C 2016 Chin. Phys. Lett. 33 040301
[16] Li J, Chen Y H, Pan Z S, Sun F Q, Li N and Li L L 2016 Acta Phys. Sin. 65 030302 (in Chinese)
[17] Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
[18] Wang Y, Bao W S, Zhou C, Jiang M S and Li H W 2016 Phys. Rev. A 94 032335
[19] Wang Y, Bao W S, Li H W, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
[20] Acín a, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[21] Pironio S, Acín A, Brunner N, Gisin N, Massar S and Scarani V 2009 New J. Phys. 11 045021
[22] Bell J S 1964 Physics 1 195
[23] Gallego R, Brunner N, Hadley C and Acín A 2010 Phys. Rev. Lett. 105 230501
[24] Pawlowski M and Brunner N 2011 Phys. Rev. A 84 010302
[25] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[26] Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
[27] Wang C, Wang S, Yin Z Q, Chen W, Li H W, Zhang C M, Ding Y Y, Guo G C and Han Z F 2016 Opt. Lett. 41 5596
[28] Wang C, Song X T, Yin Z Q, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
[29] Li F Y, Yin Z Q, Li H W, Chen W, Wang S, Wen H, Zhao Y B and Han Z F 2014 Chin. Phys. Lett. 31 070302
[30] Ma X and Razavi M 2012 Phys. Rev. A 86 062319
[31] Zhou C, Bao W, Zhang H, Li H, Wang Y, Li Y and Wang X 2015 Phys. Rev. A 91 022313
[32] Chen R, Bao W, Wang Y, Bao H, Zhou C and Li H 2016 Opt. Express 24 6594
[33] Pirandola S, Ottaviani C, Spedalieri G, et al.2015 Nat. Photon. 9 397
[34] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301
[35] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A 80 032112
[36] Wang y, Bao W, Li H, Zhou C and Li Y 2013 Phys. Rev. A 88 052322
[37] Gehring T, Händchen V, Duhme J, et al. 2015 Nat. Commun. 6 8795
[38] Walk N, Hosseini S, Geng J, et al. 2016 Optica 3 634
[39] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[40] Zhang L, Silberhorn C and Walmsley I A 2008 Phys. Rev. Lett. 100 110504
[41] Tittel W, Brendel J, Zbinden H and Gisin N 2000 Phys. Rev. Lett. 84 4737
[42] Ali-Khan I, Broadbent C J and Howell J C 2007 Phys. Rev. Lett. 98 060503
[43] Nunn J, Wright L J, Soller C, Zhang L, Walmsley I A and Smith B J 2013 Opt. Express 21 15959
[44] Etcheverry S, Cañas G, Gómez E S, Nogueira W A T, Saavedra C, Xavier G B and Lima G 2013 Sci. Rep. 3 2316
[45] Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Nature 412 313
[46] Molina-Terriza G, Vaziri A, Rehacek J, Hradil Z and Zeilinger A 2004 Phys. Rev. Lett. 92 167903
[47] Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2013 Phys. Rev. A 88 032305
[48] Mower J, Zhang Z, Desjardins P, Lee C, Shapiro J H and Englund D 2013 Phys. Rev. A 87 062322
[49] Zhang Z, Mower J,Englund D, Wong F and Shapiro J H 2014 Phys. Rev. Lett. 112 120506
[50] Bunandar D, Zhang Z, Shapiro J H and Englund D 2015 Phys. Rev. A 91 022336
[51] Lee C, Mower J, Zhang Z,Shapiro J H and Englund D 2015 Quantum Inf. Process. 14 1005
[52] Bao H Z, Bao W S, Wang Y, Zhou C and Chen R K 2016 J. Phys. A: Math. Theor. 49 205301
[53] Bao H Z, Bao W S, Wang Y, Chen R K, Zhou C, Jiang M S and Li H W 2016 Opt. Express 24 22159
[54] Niu M Y, Xu F, Furrer F and Shapiro J H 2016 Phys. Rev. A 94 052323
[55] Masanes L, Pironio S and Acín A 2011 Nat. Commun. 2 238
[56] Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506
[57] Renes J M and Renner R 2012 IEEE Trans. Inf. Theory 58 1985
[58] Tomamichel M, Colbeck R and Renner R 2010 IEEE Trans. Inf. Theory 56 4674
[59] Furrer F, Franz T, Berta M, Leverrier A, Scholz V B, Tomamichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502
[60] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343
[61] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[62] Lee C, Zhang Z, Steinbrecher G R, et al. 2014 Phys. Rev. A 90 062331
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[7] Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides
Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2022, 31(11): 110301.
[8] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[9] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[10] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[11] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[12] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[13] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[14] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[15] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
No Suggested Reading articles found!