INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Carrier transport via V-shaped pits in InGaN/GaN MQW solar cells |
Shitao Liu(刘诗涛)1, Zhijue Quan(全知觉)2, Li Wang(王立)1 |
1 School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China; 2 National Engineering Technology Research Center for LED on Si Substrate, Nanchang University, Nanchang 330047, China |
|
|
Abstract Carrier transport via the V-shaped pits (V-pits) in InGaN/GaN multiple-quantum-well (MQW) solar cells is numerically investigated. By simulations, it is found that the V-pits can act as effective escape paths for the photo-generated carriers. Due to the thin barrier thickness and low indium composition of the MQW on V-pit sidewall, the carriers entered the sidewall QWs can easily escape and contribute to the photocurrent. This forms a parallel escape route for the carries generated in the flat quantum wells. As the barrier thickness of the flat MQW increases, more carriers would transport via the V-pits. Furthermore, it is found that the V-pits may reduce the recombination losses of carriers due to their screening effect to the dislocations. These discoveries are not only helpful for understanding the carrier transport mechanism in the InGaN/GaN MQW, but also important in design of the structure of solar cells.
|
Received: 19 September 2016
Revised: 23 November 2016
Accepted manuscript online:
|
PACS:
|
81.07.St
|
(Quantum wells)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
88.40.jm
|
(Thin film III-V and II-VI based solar cells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564007 and 11364034) and the Sci-Tech Support Plan of Jiangxi Province, China (Grant No. 20141BBE50035). |
Corresponding Authors:
Li Wang
E-mail: wl@ncu.edu.cn
|
Cite this article:
Shitao Liu(刘诗涛), Zhijue Quan(全知觉), Li Wang(王立) Carrier transport via V-shaped pits in InGaN/GaN MQW solar cells 2017 Chin. Phys. B 26 038104
|
[1] |
Wu J 2009 J. Appl. Phys. 106 011101
|
[2] |
Bhuiyan A G, Sugita K, Hashimoto A and Yamamoto A 2012 IEEE J. Photovolt. 2 276
|
[3] |
Holec D, Zhang Y, Sridhara Rao D V, Kappers M J, McAleese C and Humphreys C J 2008 J. Appl. Phys. 104 123514
|
[4] |
Jani O, Ferguson I, Honsberg C and Kurtz S 2007 Appl. Phys. Lett. 91 132117
|
[5] |
Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 063505
|
[6] |
Lai K Y, Lin G J, Lai Y L, Chen Y F and He J H 2010 Appl. Phys. Lett. 96 081103
|
[7] |
Valduezafelip S, Mukhtarova A, Grenet L, Bougerol C, Durand C, Eymery J and Monroy E 2014 Appl. Phys. Express 7 032301
|
[8] |
Choi S, Shim J, Kim D, Jeong H, Jho Y, Song Y and Lee D 2013 Appl. Phys. Lett. 103 033901
|
[9] |
Redaelli L, Mukhtarova A, Valduezafelip S, Ajay A, Bougerol C, Himwas C, Faurevincent J, Durand C, Eymery J and Monroy E 2014 Appl. Phys. Lett. 105 131105
|
[10] |
Dahal R, Li J, Aryal K, Lin J Y and H. X. Jiang 2010 Appl. Phys. Lett. 97 073115
|
[11] |
Chen X, Zhao B J, Ren Z W, Tong J H, Wang X F, Zhuo X J, Zhang J, Li D W, Yi H X and Li S T 2013 Chin. Phys. B 22 078402
|
[12] |
Liang M M, Weng G E, Zhang J Y, Cai X M, LX Q, Ying L Y and Zhang B P 2014 Chin. Phys. B 23 054211
|
[13] |
Wu H Y, Ma Z G, Jiang Y, Wang L, Yang H J, Li Y F, Zuo P, Jia H Q, Wang W X, Zhou J M, Liu W M and Chen H 2016 Chin. Phys. B 25 0117803
|
[14] |
Rajabi K, Cao W Y, Shen T H, Ji Q B, He J, Yang W, Li L, Li D, Wang Q and Hu X D 2015 Chin. Phys. Lett. 32 027802
|
[15] |
Lang J R, Young N G, Farrell R M, Wu Y R and Speck J S 2012 Appl. Phys. Lett. 101 181105
|
[16] |
Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G and Hinze P 2005 Phys. Rev. Lett. 95 127402
|
[17] |
Quan Z, Wang L, Zheng C, Liu J and Jiang F 2014 J. Appl. Phys. 116 183107
|
[18] |
Kim J, Cho Y H, Ko D S, Li X S, Won J Y, Lee E, Park S H, Kim J Y and Kim S 2014 Opt. Express 22 A857
|
[19] |
Li Y, Yun F, Su X, Liu S, Ding W and Hou X 2014 J. Appl. Phys. 116 123101
|
[20] |
ATLAS by SILVACO Inc., Santa Clara, CA, America
|
[21] |
Fiorentini V and Bernardini F 1999 Phys. Rev. B 60 8849
|
[22] |
Sala F D, Carlo A D, Lugli P, Bernardini F, Fiorentini V, Scholz R and Jancu J 1999 Appl. Phys. Lett. 74 2002
|
[23] |
Zhang H, Miller E J, Yu E T, Poblenz C and Speck J S 2004 Appl. Phys. Lett. 84 4644
|
[24] |
Xia C S, Li ZM S and Sheng Y 2013 Appl. Phys. Lett. 103 233505
|
[25] |
Tomiya S, Kanitani Y, Tanaka S, Ohkubo T and Hono K 2011 Appl. Phys. Lett. 98 181904
|
[26] |
Wu X, Liu J, Quan Z, Xiong C, Zheng C, Zhang J, Mao Q and Jiang F 2014 Appl. Phys. Lett. 104 221101
|
[27] |
Vurgaftman I, Meyer J R and Rammohan L R 2001 J. Appl. Phys. 89 5815
|
[28] |
Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741
|
[29] |
Wang K, Lian C, Su N, Jena D and Timler J 2007 Appl. Phys. Lett. 91 232117
|
[30] |
Zhang X, Wang X, Xiao H, Yang C, Ran J, Wang C, Hou Q and Li J 2007 J. Phys. D 40 7335
|
[31] |
Wierer J J, Koleske D D and Lee S R 2012 Appl. Phys. Lett. 100 111119
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|