CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3 |
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Xin-Miao Zhang(张鑫淼), Han-Zhang Liu(刘汉璋), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Wen-Bin Su(苏文斌), Liang-Mo Mei(梅良模) |
School of Physics, Shandong University, Jinan 250100, China |
|
|
Abstract Density functional theory within the local density approximation is used to investigate the effect of the oxygen vacancy on the LaGaO3/SrTiO3 (001) heterojunction. It is found that the energy favorable configuration is the oxygen vacancy located at the 3rd layer of the STO substrate, and the antiferrodistortive distortion is induced by the oxygen vacancy introduced on the SrTiO3 side. Compared with the heterojunction without introducing oxygen vacancy, the heterojunction with introducing the oxygen vacancy does not change the origin of the two-dimensional electron gas (2DEG), that is, the 2DEG still originates from the dxy electrons, which are split from the t2g states of Ti atom at interface; however the oxygen vacancy is not beneficial to the confinement of the 2DEG. The extra electrons caused by the oxygen vacancy dominantly occupy the 3dx2-y2 orbitals of the Ti atom nearest to the oxygen vacancy, thus the density of carrier is enhanced by one order of magnitude due to the introduction of oxygen vacancy compared with the density of the ideal structure heterojunction.
|
Received: 10 November 2016
Revised: 27 December 2016
Accepted manuscript online:
|
PACS:
|
71.10.Ca
|
(Electron gas, Fermi gas)
|
|
63.20.dk
|
(First-principles theory)
|
|
61.72.jd
|
(Vacancies)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 11374186, 51231007, and 51202132). |
Corresponding Authors:
Ji-Chao Li
E-mail: lijichao@sdu.edu.cn
|
Cite this article:
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Xin-Miao Zhang(张鑫淼), Han-Zhang Liu(刘汉璋), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Wen-Bin Su(苏文斌), Liang-Mo Mei(梅良模) Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3 2017 Chin. Phys. B 26 037101
|
[1] |
Ohtomo A and Hwang H Y 2004 Nature 427 423
|
[2] |
Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 1942
|
[3] |
Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater. 6 493
|
[4] |
Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
|
[5] |
Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624
|
[6] |
Li L, Richter C, Mannhart J and Ashoori R C 2011 Nat. Phys. 7 762
|
[7] |
Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y and Moler K A 2011 Nat. Phys. 7 767
|
[8] |
Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802
|
[9] |
Popovic Z S, Satpathy S and Martin R M 2008 Phys. Rev. Lett. 101 256801
|
[10] |
Pentcheva R and Pickett W E 2009 Phys. Rev. Lett. 102 107602
|
[11] |
Li J C C, Beltran J I and Munoz M C 2013 Phys. Rev. B 87 075411
|
[12] |
Ong P V and Lee J 2013 Phys. Rev. B 87 195212
|
[13] |
Zhong Z C, Toth A and Held K 2013 Phys. Rev. B 87 161102
|
[14] |
Du Y L, Wang C L, Li J C, Zhang X H, Wang F N, Liu J, Zhu Y H, Yin N and Mei L M 2015 Chin. Phys. B 24 037301
|
[15] |
Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B and Mei L M 2014 Chin. Phys. B 23 087302
|
[16] |
Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthelemy A and Fert A 2007 Phys. Rev. Lett. 98 216803
|
[17] |
Kalabukhov A, Gunnarsson R, Borjesson J, Olsson E, Claeson T and Winkler D 2007 Phys. Rev. B 75 121404
|
[18] |
Basletic M, Maurice J L, Carretero C, Herranz G, Copie O, Bibes M, Jacquet E, Bouzehouane K, Fusil S and Barthelemy A 2008 Nat. Mater. 7 621
|
[19] |
Cen C, Thiel S, Mannhart J and Levy J 2009 Science 323 1026
|
[20] |
Chen Y Z, Pryds N, Sun J R, Shen B G and Linderoth S 2013 Chin. Phys. B 22 116803
|
[21] |
Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I, Codda M, Marre D, Cantoni C, Gazquez J, Varela M, Pennycook S J and Miletto Granozio F 2010 Appl. Phys. Lett. 97 152111
|
[22] |
Nazir S, Singh N and Schwingenschlogl U 2011 Appl. Phys. Lett. 98 262104
|
[23] |
Amoruso S, Aruta C, Aurino P, Bruzzese R, Wang X, Granozio F M and di Uccio U S 2012 Appl. Surf. Sci. 258 9116
|
[24] |
Aruta C, Amoruso S, Ausanio G, Bruzzese R, Di Gennaro E, Lanzano M, Granozio F M, Riaz M, Sambri A, di Uccio U S and Wang X 2012 Appl. Phys. Lett. 101 031602
|
[25] |
Xu Q F, Wu D and Li A D 2013 Phys. Lett. A 377 577
|
[26] |
Wang F, Li J, Du Y, Zhang X, Liu H, Liu J, Wang C and Mei L 2015 Appl. Surf. Sci. 355 1316
|
[27] |
Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
|
[28] |
Pentcheva R and Pickett W E 2006 Phys. Rev. B 74 035112
|
[29] |
Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A and Beasley M R 2007 Phys. Rev. Lett. 98 196802
|
[30] |
Kresse G and Furthmuller J 1996 Phys. Rev. B, Condens. Matter 54 11169
|
[31] |
Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
|
[32] |
Zhong Z C, Xu P X and Kelly P J 2010 Phys. Rev. B 82 165127
|
[33] |
Li Y, Phattalung S N, Limpijumnong S, Kim J and Yu J 2011 Phys. Rev. B 84 245307
|
[34] |
Jaekwang L, Chungwei L and Demkov A A 2013 Phys. Rev. B 87 165103
|
[35] |
Chen Y Z, Pryds N, Kleibeuker J E, Koster G, Sun J R, Stamate E, Shen B G, Rijnders G and Linderoth S 2011 Nano Lett. 11 3774
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|