Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 034207    DOI: 10.1088/1674-1056/26/3/034207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Visible and near-infrared optical properties of Nd: CLNGG crystal waveguides formed by proton implantation

Chun-Xiao Liu(刘春晓)1, Xiao-Liang Shen(沈晓亮)1, Wei-Nan Li(李玮楠)2, Wei Wei(韦玮)1
1 School of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences(CAS), Xi'an 710119, China
Abstract  A Nd:CLNGG waveguide structure operated at wavelengths of both 632.8 nm and 1539 nm was demonstrated for the first time to our knowledge, which was produced by the 480-keV H+ ion implantation with a dose of 1.0×1017 protons/cm2. Its propagating modes at 632.8 nm and 1539 nm were measured by the well-known prism coupling technique. The refractive index profile at either 632.8-nm wavelength or 1539-nm wavelength was optical barrier type in the proton-implanted Nd:CLNGG crystal optical waveguide, which was calculated by using the reflectivity calculation method. The near-field light intensity distributions were also simulated by the finite-difference beam propagation method in the visible and near-infrared bands.
Keywords:  ion implantation      Nd:CLNGG crystal      waveguide  
Received:  26 September 2016      Revised:  23 December 2016      Accepted manuscript online: 
PACS:  42.79.Gn (Optical waveguides and couplers)  
  61.80.Jh (Ion radiation effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405041 and 61177084), the Nanjing University of Posts and Telecommunications Scientific Foundation (NUPTSF), China (Grant No. NY214159), and the RCOCET, China (Grant No. ZSF0401).{These authors contributed equally to this work.
Corresponding Authors:  Wei Wei     E-mail:  cxliu0816@sina.com

Cite this article: 

Chun-Xiao Liu(刘春晓), Xiao-Liang Shen(沈晓亮), Wei-Nan Li(李玮楠), Wei Wei(韦玮) Visible and near-infrared optical properties of Nd: CLNGG crystal waveguides formed by proton implantation 2017 Chin. Phys. B 26 034207

[1] Righini G C and Chiappini A 2014 Opt. Eng. 53 071819
[2] Shao G W and Jin G L 2009 Chin. Phys. B 18 1096
[3] Tan Y, Vázquez de Aldana J R and Chen F 2014 Opt. Eng. 53 107109
[4] Bradley J D B and Pollnau M 2011 Laser Photon. Rev. 5 368
[5] Wang L, Haunhorst C E, Volk M F, Chen F and Kip D 2015 Opt. Express 23 30188
[6] Qin X F, Chen M, Wang X L, Liang Y and Zhang S M 2010 Chin. Phys. B 19 113403
[7] Liu C X, Li W N, Wei W and Peng B 2012 Chin. Phys. B 21 074211
[8] Chen F 2008 Crit. Rev. Solid State 33 165
[9] Vázquez G V, Valiente R, Gómez-Salces S, Flores-Romero E, Rickards J and Trejo-Luna R 2016 Opt. Laser Technol. 79 132
[10] Chen F 2012 Laser Photon. Rev. 6 622
[11] He K N, Wei Z Y, Li D H, Zhang Z G, Zhang H J, Wang J Y and Gao C Q 2009 Opt. Express 17 19292
[12] Mukhopadhyay P K, Ranganathan K, George J, Sharma S K and Nathan T P S 2003 Opt. Laser Technol. 35 173
[13] Voronko Y K, Sobol A A, Karasik A Y, Eskov N A, Rabochkina P A and Ushakov S N 2002 Opt. Mater. 20 197
[14] Tan Y, Chen F, Vázquez de Aldana J R, Yu H H and Zhang H J 2015 IEEE J. Quantum Electron. 21 1601905
[15] Wang L L and Yu Y G 2010 Appl. Surf. Sci. 256 2616
[16] Liu C X, Zhao J H, Zhang H J and Wang X L 2009 J. Korean Phys. Soc. 55 2638
[17] Liu C X, Fu L L, Cheng L L, Zhu X F, Lin S B, Zheng R L, Zhou Z G, Guo H T, Li W N and Wei W 2016 Mod. Phys. Lett. B 30 1650261
[18] Ziegler J F 2011 SRIM, http://www.srim.org.
[19] Rivera A, Olivares J, García G, Cabrera J M, Agulló-Rueda F and Agulló-López F 2009 Phys. Status Solidi A 206 1109
[20] Kip D 1998 Appl. Phys. B 67 131
[21] Cantelar E, Jaque D and Lifante G 2012 Opt. Mater. 34 555
[22] Chandler P J and Lama F J 1986 Opt. Acta 33 127
[23] Liu T, Huang Q, Zhao J H, Kong W J, Liu P, Zhang L, Zhou Y F, Yu X F, Wang L and Wang X L 2015 Chin. Phys. B 24 056102
[24] Rsoft Design Group, Computer software BeamPROP. version 8.0, http://www.rsoftdesign.com
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[7] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[8] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[9] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[10] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[11] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[12] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[13] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
No Suggested Reading articles found!