INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Magnetoelectric effect in multiferroic NdMn2O5 |
Syed Hamad Bukhari, Javed Ahmad |
Department of Physics, Bahauddin Zakariya University, Multan 60800, Pakistan |
|
|
Abstract We have measured the dielectric constant for NdMn2O5 in an external magnetic field to map out the magnetoelectric phase diagram. The phase diagram corresponds well with the previously reported data of neutron diffraction and magnetic susceptibility. Our main finding is the observation of a dielectric anomaly in the low temperature phase with a strong magnetoelectric effect, which is attributed to the independent Nd3+ ordering. Moreover, the absence of the dielectric anomaly in the paramagnetic phase is discussed, keeping in view the exchange interaction and its dependence on the rare-earth R3+ ionic radius.
|
Received: 30 July 2016
Revised: 25 September 2016
Accepted manuscript online:
|
PACS:
|
81.20.Fw
|
(Sol-gel processing, precipitation)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
77.80.B-
|
(Phase transitions and Curie point)
|
|
Fund: Project supported by Higher Education Commission (HEC) of Pakistan through its IRSIP scholarship program (IRSIP 27 PS 28). |
Corresponding Authors:
Syed Hamad Bukhari
E-mail: bukhari.hamad@gmail.com
|
Cite this article:
Syed Hamad Bukhari, Javed Ahmad Magnetoelectric effect in multiferroic NdMn2O5 2017 Chin. Phys. B 26 018103
|
[1] |
Higashiyama D, Miyasaka S and Tokura Y 2005 Phys. Rev. B 23 064421
|
[2] |
Hur N, Park S, Sharma P A, Ahn J S, Guha S and Cheong S W 2004 Nature 429 392
|
[3] |
Lee N, Vecchini C, Choi Y J, Chapon L C, Bombardi A, Radaelli P G and Cheong S W 2013 Phys. Rev. Lett. 110 137203
|
[4] |
Fukunaga M, Sakamoto Y, Kimura H, Noda Y, Abe N, Taniguchi K, Arima T, Wakimoto S, Takeda M and Kakurai K 2009 Phys. Rev. Lett. 103 077204
|
[5] |
Fukunaga M, Sakamoto Y, Kimura H and Noda Y 2011 J. Phys. Soc. Jpn. 80 014705
|
[6] |
Ge H, Zhang X Q, Ke Y J, Jin J L, Liao Z X and Cheng Z H 2013 Chin. Phys. B 22 057502
|
[7] |
Tang Z H, Tang M H, Lv X S, Cai H Q, Xiao Y G, Cheng C P, Zhou Y C and He J 2013 J. App. Phys. 113 164106
|
[8] |
Tang Z, Wang B, Yang H, Xu X, Liu Y, Sun D, Xia L, Zhan Q, Chen B, Tang M, Zhou Y, Wang J and Li R 2014 App. Phys. Lett. 105 103504
|
[9] |
Tang Z, Xiong Y, Tang M, Xiao Y, Zhang X, Yuan M, Ouyang J and Zhou Y 2014 J. Mater. Chem. C 2 1427
|
[10] |
Kagomiya I, Kohn K and Uchiyama T 2002 Ferroelectrics 280 131
|
[11] |
Alonso J, Casais M, Martínez-Lope M, Martinez J and Fernáandez-Díaz M 1997 J. Phys.:Condens. Matter 9 8515
|
[12] |
Balédent V, Chattopadhyay S, Fertey P, Lepetit M, Greenblatt M, Wanklyn B, Saouma F, Jang J and Foury-Leylekian P 2015 Phys. Rev. Lett. 114 117601
|
[13] |
Tachibana M, Akiyama K, Kawaji H and Atake T 2005 Phys. Rev. B 72 224425
|
[14] |
Zobkalo I, Gavrilov S, Nyi N S, Barilo S and Shiryaev S 2014 J. Magn. Magn. Mater. 354 85
|
[15] |
Blake G, Chapon L, Radaelli P, Park S, Hur N, Cheong S W and Rodriguez-Carvajal J 2005 Phys. Rev. B 71 214402
|
[16] |
Doubrovsky C, André G, Gukasov A, Auban-Senzier P, Pasquier C, Elkaim E, Li M, Greenblatt M, Damay F and Foury-Leylekian P 2012 Phys. Rev. B 86 174417
|
[17] |
Chattopadhyay S, Balédent V, Damay F, Gukasov A, Moshopoulou E, Auban-Senzier P, Pasquier C, André G, Porcher F and Elkaim E 2016 Phys. Rev. B 93 104406
|
[18] |
García-Flores A F, Granado E, Martinho H, Urbano R R, Rettori C, Golovenchits E I, Sanina V A, Oseroff S B, Park S and Cheong S W 2006 Phys. Rev. B 73 104411
|
[19] |
Cao J, Vergara L, Musfeldt J, Litvinchuk A, Wang Y, Park S and Cheong S W 2008 Phys. Rev. B 78 064307
|
[20] |
Bukhari S H and Ahmad J 2016 Physica B 492 39
|
[21] |
Bukhari S H and Ahmad J 2016 Physica B 503 179
|
[22] |
Zhang X W, Lin T, Xu J, Xu L and Chen K J 2012 Chin. Phys. B 21 018101
|
[23] |
Wanklyn B M 1972 J. Mater. Sci. 7 813
|
[24] |
Koyata Y, Nakamura H, Iwata N, Inomata A and Kohn K 1996 J. Phys. Soc. Jpn. 65 1383
|
[25] |
Euzen P, Leone P, Gueho C and Palvadeau P 1993 Acta Crystallogr. C 49 1875
|
[26] |
Chattopadhyay S, Balédent V, Auban-Senzier P, Pasquier C, Doubrovsky C, Greenblatt M and Foury-Leylekian P 2015 Physica B 460 214
|
[27] |
Hur N, Park S, Sharma P A, Guha S and Cheong S W 2004 Phys. Rev. Lett. 93 107207
|
[28] |
Shuvaev A M, Travkin V D, Ivanov V Y, Mukhin A A and Pimenov A 2010 Phys. Rev. Lett. 104 097202
|
[29] |
Sushkov A B, Aguilar R V, Park S, Cheong S W and Drew H D 2007 Phys. Rev. Lett. 98 027202
|
[30] |
Kobayashi S, Osawa T, Kimura H, Noda Y, Kagomiya I and Kohn K 2004 J. Phys. Soc. Jpn. 73 1031
|
[31] |
Kobayashi S, Kimura H, Noda Y and Kohn K 2005 J. Phys. Soc. Jpn. 74 468
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|