Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037804    DOI: 10.1088/1674-1056/27/3/037804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High mobility ultrathin ZnO p-n homojunction modulated by Zn0.85Mg0.15O quantum barriers

Jing-Jing Yang(杨景景)1,2, Qing-Qing Fang(方庆清)1, Wen-Han Du(杜文汉)2,3, Ke-Ke Zhang3, Da-Shun Dong(董大舜)1
1 School of Physics and Materials Science, Anhui University, Hefei 230601, China;
2 Changzhou Institute of Technology, Changzhou 213002, China;
3 School of Materials Science and Engineering, Nanyang Technological University, Singapore
Abstract  

The adding of ZnMgO asymmetric double barriers (ADB) in p-ZnO:(Li, N)/n-ZnO homojunction affects the p-n junction device performance prominently. Two different homojunctions are fabricated on Si (100) substrates by pulsed laser deposition; one is the traditional p-ZnO:(Li, N)/n-ZnO homojunction with different thicknesses named as S1 (250 nm) and S2 (500 nm), the other is the one with ADB embedded in the n-layer named as Q (265 nm). From the photoluminescence spectra, defect luminescence present in the S-series devices is effectively limited in the Q device. The current-voltage curve of the Q device shows Zener-diode rectification property because the two-dimensional electron gas tunnels through the narrow ZnMgO barrier under a reverse bias, thus decreasing the working p-n homojunction thickness from 500 nm to 265 nm. The ADB-modified homojunction shows higher carrier mobility in the Q device. The electroluminescence of the ZnO homojunction is improved in Q compared to S2, because the holes in p-type ZnO (Li, N) can cross the wide ZnMgO barrier under a forward bias voltage into the ZnO quantum well. Therefore, electron-hole recombination occurs in the narrow bandgap of n-type ZnO, creating an ultraviolet light-emitting diode using the ZnO homojunction.

Keywords:  ZnO p-n homojunction      light-emitting diodes      ZnMgO asymmetric double barriers  
Received:  15 October 2017      Revised:  22 December 2017      Accepted manuscript online: 
PACS:  78.67.De (Quantum wells)  
  73.21.Fg (Quantum wells)  
  68.35.bg (Semiconductors)  
  81.15.Fg (Pulsed laser ablation deposition)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61540071 and 11705016), Project of Natural Science Research of Higher Education in Jiangsu Province, China (Grant Nos. 17KJB510001 and 17KJB140002), Changzhou Sci&Tech Program, China (Grant No. CJ20160026), and Changzhou Institute of Technology Science Foundation, China (Grant No. YN1408).

Corresponding Authors:  Qing-Qing Fang, Wen-Han Du     E-mail:  physfangqq@126.com;duwenhan@ntu.edu.sg

Cite this article: 

Jing-Jing Yang(杨景景), Qing-Qing Fang(方庆清), Wen-Han Du(杜文汉), Ke-Ke Zhang, Da-Shun Dong(董大舜) High mobility ultrathin ZnO p-n homojunction modulated by Zn0.85Mg0.15O quantum barriers 2018 Chin. Phys. B 27 037804

[1] Ding K, Ullah M B, Avrutina V, Özgür Ü and Morkoç H 2017 Appl. Phys. Lett. 111 182101
[2] Toporkov M, Demchenko D O, Zolnai Z, Volk J, Avrutin V and Morkoc H 2016 J. Appl. Phys. 119 095311
[3] Ullah M B, Avrutin V, Nakagawara T, Hafiz S, Altuntas I and Morkoc H 2017 J. Appl. Phys. 121 185704
[4] Falson J, Kozuka Y, Uchida M, Smet J H, Arima T H, Tsukazaki A and Kawasaki M 2016 Sci. Rep. 6 26598
[5] Ardaravičius L, Kiprijanovič O, Liberis J, Ramonas M, Šermukšnis E, Matulionis A, Toporkov M, Avrutin V, Özgür Ü and Morkoç H 2017 Mater. Res. Express 4 066301
[6] Khan M A, Singh S, Mukherjee S and Kranti A 2017 IEEE Trans. Electron Devices 64 1015
[7] Wang Z, He H P, Pan X H and Ye Z Z 2016 Appl. Phys. A 122 962
[8] Xu C X, Chen W, Pan X H, Chen S S, Ye Z Z and Huang J Y 2016 J. Cryst. Growth 449 92
[9] Przezdziecka E, Wierzbicka A, Reszka A, Goscinski K, Droba A and Jakiela R 2013 J. Phys. D:Appl. Phys. 46 035101
[10] Chu S, Lim J H, Mandalapu L J, Yang Z, Li L and Liu J L 2008 Appl. Phy. Lett. 92 152103
[11] Park T Y, Choi Y S, Kim S M, Jung G Y, Park S J and Kwon B J 2011 Appl. Phys. Lett. 98 251111
[12] Zhang H Z, Shen R S, Liang H W, Liu Y D, Liu Y and Xia X C 2013 J. Phys. D:Appl. Phys. 46 065101
[13] Su S C, Zhu H, Zhang L X, He M, Zhao L Z and Yu S F 2013 Appl. Phys. Lett. 103 131104
[14] Park C H, Zhang S B and Wei S H 2002 Phys. Rev. B 66 073202
[15] Xu W Z, Ye Z Z and Zeng Y J 2006 Appl. Phys. Lett. 88 173506
[16] Koichi M, Ryota S, Tomoaki I, Daisuke Y, Hyunwoong S, Kazunori K, Masaharu S and Naho I 2015 Thin Solid Films 587 106
[17] Hao X, Ma J, Zhang D, Yang T and Ma H 2002 Appl. Surf. Sci. 189 137
[18] Yuan W, Zhu L P, Ye Z Z and Gu X Q 2009 Appl. Surf. Sci. 256 1452
[19] Kim Y J, Lee H S, Noh J S, Kim Y J and Lee H S 2016 Thin Solid Films 603 160
[20] Yang J J, Fang Q Q, Wang W N, Wang D D and Wang C 2014 J. Appl. Phys. 115 124509
[21] Zha K L Chen G P, Juliana H Maria C and Shen A D 2015 J. Cryst. Growth 425 221
[22] Chen W, Pan X H, Ye Z Z, Chen S S, Zhang H H, Ding P L and Huang B J 2015 Appl. Phys. A 119 647
[23] Ye J D, Pannirselvam S, Lim S T, Bi J F, Sun X W, Lo G Q and Toe K L 2010 Appl. Phys. Lett. 97 111908
[24] Zhang B P, Liu B L, Yu J Z, Wang Q M, Liu C Y and Liu Y C 2007 Appl. Phys. Lett. 90 11213
[25] Stölzel M, Müller A, Benndorf G, Lorenz M, Patzig C and Höche T 2014 Appl. Phys. Lett. 104 192102
[26] Chu S, Wang G P Zhou W H, Lin Y Q, Chernyak L Zhao J Z, Kong J Y, Li L, Ren J J and Liu J L 2011 Nat. Nanotech. 6 175
[27] Welna M, Kudrawiec R, Misiewicz J, Yano M, Koike K and Sasa S 2015 Phys. Status Solidi a 211 780
[1] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[2] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[3] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[4] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[5] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[6] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[7] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[8] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
[9] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[10] Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer
Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Wen-Xiao Hu(胡文晓), Guang Li(李光), Xing-Jun Luo(罗幸君), Hu Wang(汪虎), Jia-Kai Xiao(肖稼凯), Jia-Qi Guo(郭佳琦), Xing-Fu Wang(王幸福), Rui Hao(郝锐), Han-Xiang Yi(易翰翔), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(1): 018503.
[11] Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes
Abida Perveen, Xin Zhang(张欣), Jia-Lun Tang(汤加仑), Deng-Bao Han(韩登宝), Shuai Chang(常帅), Luo-Gen Deng(邓罗根), Wen-Yu Ji(纪文宇), Hai-Zheng Zhong(钟海政). Chin. Phys. B, 2018, 27(8): 086101.
[12] Silica encapsulated ZnO quantum dot-phosphor nanocomposites: Sol-gel preparation and white light-emitting device application
Ya-Chuan Liang(梁亚川), Kai-Kai Liu(刘凯凯), Ying-Jie Lu(卢英杰), Qi Zhao(赵琪), Chong-Xin Shan(单崇新). Chin. Phys. B, 2018, 27(7): 078102.
[13] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[14] Improvement of green InGaN-based LEDs efficiency using a novel quantum well structure
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Ziguang Ma(马紫光), Haiyan Wu(吴海燕), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2017, 26(8): 087311.
[15] Evaluation of current and temperature effects on optical performance of InGaAlP thin-film SMD LED mounted on different substrate packages
Muna E. Raypah, Mutharasu Devarajan, Fauziah Sulaiman. Chin. Phys. B, 2017, 26(7): 078503.
No Suggested Reading articles found!