Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 120305    DOI: 10.1088/1674-1056/25/12/120305
GENERAL Prev   Next  

Design of a gap tunable flux qubit with FastHenry

Naheed Akhtar, Yarui Zheng(郑亚锐), Mudassar Nazir, Yulin Wu(吴玉林), Hui Deng(邓辉), Dongning Zheng(郑东宁), Xiaobo Zhu(朱晓波)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

In the preparations of superconducting qubits, circuit design is a vital process because the parameters and layout of the circuit not only determine the way we address the qubits, but also strongly affect the qubit coherence properties. One of the most important circuit parameters, which needs to be carefully designed, is the mutual inductance among different parts of a superconducting circuit. In this paper we demonstrate how to design a gap-tunable flux qubit by layout design and inductance extraction using a fast field solver FastHenry. The energy spectrum of the gap-tunable flux qubit shows that the measured parameters are close to the design values.

Keywords:  superconducting circuit      Josephson junction      flux qubit      FastHenry  
Received:  24 March 2016      Revised:  10 August 2016      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.Cp (Josephson devices)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374344, 11404386, and 91321208), the National Basic Research Program of China (Grant No. 2014CB921401), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).

Corresponding Authors:  Dongning Zheng, Xiaobo Zhu     E-mail:  dzheng@iphy.ac.cn;xbzhu16@ustc.edu.cn

Cite this article: 

Naheed Akhtar, Yarui Zheng(郑亚锐), Mudassar Nazir, Yulin Wu(吴玉林), Hui Deng(邓辉), Dongning Zheng(郑东宁), Xiaobo Zhu(朱晓波) Design of a gap tunable flux qubit with FastHenry 2016 Chin. Phys. B 25 120305

[1] Josephson B D 1962 Phys. Lett. 1 251
[2] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press) pp. 2-12
[3] Monroe C and Kim J 2013 Science 339 1164
[4] Gershenfeld N A and Chuang I L 1997 Science 275 350
[5] Cory D G, Fahmy A F and Havel T F 1997 Proceedings of the National Academy of Sciences of the United States of America 94 1634
[6] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[7] Deutsch I H, Brennen G K and Jessen P S 2000 Fortschritte Der Physik-Progress of Physics 48 925
[8] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[9] Paauw F G, Fedorov A, Harmans C J P M and Mooij J E 2009 Phys. Rev. Lett. 102 090501
[10] Zhu X, Kemp A, Saito S and Semba K 2010 Appl. Phys. Lett. 97 102503
[11] van der Wal C H, ter Haar A C J, Wilhelm F K, Schouten R N, Harmans C J P M, Orlando T P, Lloyd S and Mooij J E 2000 Science 290 773
[12] Ithier G, Collin E, Joyez P, Meeson P J, Vion D, Esteve D, Chiarello F, Shnirman A, Makhlin Y, Schriefl J and Schön G 2005 Phys. Rev. B 72 134519
[13] Paauw F G 2009 "Superconducting Flux Qubits:Quantum Chains And Tunable Qubits", Ph. D. Thesis (Netherland:Delft University Technology)
[14] van der Wal C H 2009 "Quantum Superposition of Persistant Josephson Currents", Ph. D. Thesis (Netherland:Delft Univ. Technology)
[15] Kamon M, Tsuk M J and Whit J K 1994 IEEE Trans. Microwave Theory and Techniques 42 1750
[16] Wu Y L, Deng H, Yu H F, Xue G M, Tian Y, Li J, Chen Y F, Zhao S P and Zheng D N 2013 Chin. Phys. B 22 060309
[17] Wu Y L, Deng H, Huang K Q, Tian Y, Yu H F, Xue G M, Jin Y R, Li J, Zhao S P and Zheng D N 2013 Chin. Phys. B 22 090312
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[3] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[4] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[5] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[6] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[7] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[8] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[9] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[10] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[11] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[12] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[13] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[14] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[15] Quadruple-stacked Nb/NbxSi1-x/Nb Josephson junctions for large-scale array application
Wenhui Cao(曹文会), Jinjin Li(李劲劲), Lanruo Wang(王兰若), Yuan Zhong(钟源), Qing Zhong(钟青). Chin. Phys. B, 2020, 29(6): 067404.
No Suggested Reading articles found!