|
|
Thermodynamics and geometrothermodynamics of regular black hole with nonlinear electrodynamics |
Qiao-Shan Gan(甘俏姗), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久) |
College of Physics and Information Science, Hunan Normal University, Changsha 410081, China |
|
|
Abstract In this paper we investigate the phase transition and geometrothermodynamics of regular electrically charged black hole in nonlinear electrodynamics theory coupled to general relativity. We analyze the types of phase transition of the thermodynamic system by calculating its temperature, heat capacity, and free energy, etc. We find that there are second-order phase transitions from the heat capacity for a large value of S. In addition, employing the geometrothermodynamics, we obtain a Legendre invariance metric and find the relationship between the thermodynamical phase transition and the singularity of the curvature scalar in the regular black hole with the nonlinear electrodynamics.
|
Received: 21 June 2016
Revised: 11 August 2016
Accepted manuscript online:
|
PACS:
|
04.70.-s
|
(Physics of black holes)
|
|
05.07.Fh
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.10873004). |
Corresponding Authors:
Ju-Hua Chen
E-mail: jhchen@hunnu.edu.cn
|
Cite this article:
Qiao-Shan Gan(甘俏姗), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久) Thermodynamics and geometrothermodynamics of regular black hole with nonlinear electrodynamics 2016 Chin. Phys. B 25 120401
|
[1] |
Gunasekaran S, Kubizñák D and Mann R B 2012 JHEP 11 110
|
[2] |
Hendi S H and Vahidinia M H 2012 Phys. Rev. D 88 131
|
[3] |
Dolan B P 2012 Arxiv Preprint Arxiv. 28 235017
|
[4] |
Wei S W and Liu Y X 2013 Phys. Rev. D 87 506
|
[5] |
Diaz-Alonso J and Rubiera-Garcia D 2013 Gen. Rel. Grav. 45 1901
|
[6] |
Xu W and Zhao L 2014 Phys. Lett. B 736 214
|
[7] |
Zhao R, Ma M, Zhao H and Zhang L 2014 Adv. High Energy Phys. 4 124854
|
[8] |
Zhang J L, Cai R G and Yu H arXiv:1502.01428v1[hep-th]
|
[9] |
Wei S W and Liu Y X 2015 Phys. Rev. Lett. 11 2756
|
[10] |
Hendi S H, Sheykhi A, Panahiyan S and Panah B E 2015 Phys. Rev. D 6 064028
|
[11] |
Prasobh C B, Suresh J and Kuriakose V C 2015 arXiv:1510.04784v1
|
[12] |
Soroushfar S, Saffari R and Kamvar N arXiv:1204.2506v3[gr-qc]
|
[13] |
Bardeen J M and Carter B Hawking S 1973 Commun. Math. Phys. 31 161
|
[14] |
Chaturvedi P and Sengupta G arXiv:1501.07748v1[hep-th]
|
[15] |
Belhaj A and Chabab M 2016 Eur. Phys. J. C 2 1
|
[16] |
Maldacena J 1998 Adv. Theor. Math. Phys. 2 231
|
[17] |
Hermann R 1973 Geometry, physics and systems (New York:Marcel Dekker Incorporation) p. 53
|
[18] |
Mrugala R 1978 Rep. Math. Phys. 14 419
|
[19] |
Mrugala R 1985 Rep. Math. Phys. 21 197
|
[20] |
Weinhold F 1975 J. Chem. Phys. 63 2479
|
[21] |
Ruppeiner G 1979 Phys. Rev. A 20 1608
|
[22] |
Quevedo H 2007 J. Math. Phys. 48 013506
|
[23] |
Quevedo H 2008 Gen. Rel. Grav. 40 971
|
[24] |
Quevedo H 2009 Phys. Rev. D 79 371
|
[25] |
Bardeen J M 1968 Non-singular general-relativistic gravitational collapse (Tiflis, USSR:In Proceedings of GR5) p. 174
|
[26] |
Dymnikova I 1992 Gen. Rel. Grav. 24 235
|
[27] |
Hayward S A 2006 Phys. Rev. Lett. 96 031103
|
[28] |
Balart L and Vagenas E C 2014 Phys. Lett. B 730 14
|
[29] |
Balart L and Vagenas E C 2014 Phys. Rev. D 90 124045
|
[30] |
Ayon-Beato E and García A 1998 Phys. Rev. Lett. 80 5056
|
[31] |
Bronnikov K A 2001 Phys. Rev. D 63 044005
|
[32] |
Mokhtar Hassaï 2008 Class. Quantum Grav. 25 246
|
[33] |
Hollenstein L and Lobo F S N 2008 Phys. Rev. D 78 124007
|
[34] |
Balart L 2009 Phys. Lett. A 24 2777
|
[35] |
Arellano A V B and Lobo F S N 2006 Class. Quantum Grav. 23 5811
|
[36] |
Yun S M, Kim Y W and Park Y J 2007 Gen. Rel. Grav. 41 1051
|
[37] |
González H A, Hassaïne M and Martínez C 2009 Phys. Rev. D 80 363
|
[38] |
Quevedo H and Sánchez A 2010 Gen. Rel. Grav. 43 1153
|
[39] |
Tharanath R, Suresh J and Kuriakose V C 2015 Gen. Rel. Grav. 47 1007
|
[40] |
Dymnikova I 2004 Class. Quantum Grav. 21 4417
|
[41] |
Quevedo H and Sánchez A 2008 JHEP 9 1619
|
[42] |
Bekenstein J D 1972 Lett. Nuovo Cimento 4 737
|
[43] |
Bekenstein J D 1973 Phys. Rev. D 7 2333
|
[44] |
Hawking S W 1976 Phys. Rev. D 13 191
|
[45] |
Gruber C, Luongo O and Quevedo H arXiv:1603.09443v2[gr-qc]
|
[46] |
Davies P C W 1977 Proc. Roy. Soc. Lond. A 353 499
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|