Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 120401    DOI: 10.1088/1674-1056/25/12/120401
GENERAL Prev   Next  

Thermodynamics and geometrothermodynamics of regular black hole with nonlinear electrodynamics

Qiao-Shan Gan(甘俏姗), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久)
College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  

In this paper we investigate the phase transition and geometrothermodynamics of regular electrically charged black hole in nonlinear electrodynamics theory coupled to general relativity. We analyze the types of phase transition of the thermodynamic system by calculating its temperature, heat capacity, and free energy, etc. We find that there are second-order phase transitions from the heat capacity for a large value of S. In addition, employing the geometrothermodynamics, we obtain a Legendre invariance metric and find the relationship between the thermodynamical phase transition and the singularity of the curvature scalar in the regular black hole with the nonlinear electrodynamics.

Keywords:  thermodynamic      phase transition      geometrothermodynamics  
Received:  21 June 2016      Revised:  11 August 2016      Accepted manuscript online: 
PACS:  04.70.-s (Physics of black holes)  
  05.07.Fh  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No.10873004).

Corresponding Authors:  Ju-Hua Chen     E-mail:  jhchen@hunnu.edu.cn

Cite this article: 

Qiao-Shan Gan(甘俏姗), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久) Thermodynamics and geometrothermodynamics of regular black hole with nonlinear electrodynamics 2016 Chin. Phys. B 25 120401

[1] Gunasekaran S, Kubizñák D and Mann R B 2012 JHEP 11 110
[2] Hendi S H and Vahidinia M H 2012 Phys. Rev. D 88 131
[3] Dolan B P 2012 Arxiv Preprint Arxiv. 28 235017
[4] Wei S W and Liu Y X 2013 Phys. Rev. D 87 506
[5] Diaz-Alonso J and Rubiera-Garcia D 2013 Gen. Rel. Grav. 45 1901
[6] Xu W and Zhao L 2014 Phys. Lett. B 736 214
[7] Zhao R, Ma M, Zhao H and Zhang L 2014 Adv. High Energy Phys. 4 124854
[8] Zhang J L, Cai R G and Yu H arXiv:1502.01428v1[hep-th]
[9] Wei S W and Liu Y X 2015 Phys. Rev. Lett. 11 2756
[10] Hendi S H, Sheykhi A, Panahiyan S and Panah B E 2015 Phys. Rev. D 6 064028
[11] Prasobh C B, Suresh J and Kuriakose V C 2015 arXiv:1510.04784v1
[12] Soroushfar S, Saffari R and Kamvar N arXiv:1204.2506v3[gr-qc]
[13] Bardeen J M and Carter B Hawking S 1973 Commun. Math. Phys. 31 161
[14] Chaturvedi P and Sengupta G arXiv:1501.07748v1[hep-th]
[15] Belhaj A and Chabab M 2016 Eur. Phys. J. C 2 1
[16] Maldacena J 1998 Adv. Theor. Math. Phys. 2 231
[17] Hermann R 1973 Geometry, physics and systems (New York:Marcel Dekker Incorporation) p. 53
[18] Mrugala R 1978 Rep. Math. Phys. 14 419
[19] Mrugala R 1985 Rep. Math. Phys. 21 197
[20] Weinhold F 1975 J. Chem. Phys. 63 2479
[21] Ruppeiner G 1979 Phys. Rev. A 20 1608
[22] Quevedo H 2007 J. Math. Phys. 48 013506
[23] Quevedo H 2008 Gen. Rel. Grav. 40 971
[24] Quevedo H 2009 Phys. Rev. D 79 371
[25] Bardeen J M 1968 Non-singular general-relativistic gravitational collapse (Tiflis, USSR:In Proceedings of GR5) p. 174
[26] Dymnikova I 1992 Gen. Rel. Grav. 24 235
[27] Hayward S A 2006 Phys. Rev. Lett. 96 031103
[28] Balart L and Vagenas E C 2014 Phys. Lett. B 730 14
[29] Balart L and Vagenas E C 2014 Phys. Rev. D 90 124045
[30] Ayon-Beato E and García A 1998 Phys. Rev. Lett. 80 5056
[31] Bronnikov K A 2001 Phys. Rev. D 63 044005
[32] Mokhtar Hassaï 2008 Class. Quantum Grav. 25 246
[33] Hollenstein L and Lobo F S N 2008 Phys. Rev. D 78 124007
[34] Balart L 2009 Phys. Lett. A 24 2777
[35] Arellano A V B and Lobo F S N 2006 Class. Quantum Grav. 23 5811
[36] Yun S M, Kim Y W and Park Y J 2007 Gen. Rel. Grav. 41 1051
[37] González H A, Hassaïne M and Martínez C 2009 Phys. Rev. D 80 363
[38] Quevedo H and Sánchez A 2010 Gen. Rel. Grav. 43 1153
[39] Tharanath R, Suresh J and Kuriakose V C 2015 Gen. Rel. Grav. 47 1007
[40] Dymnikova I 2004 Class. Quantum Grav. 21 4417
[41] Quevedo H and Sánchez A 2008 JHEP 9 1619
[42] Bekenstein J D 1972 Lett. Nuovo Cimento 4 737
[43] Bekenstein J D 1973 Phys. Rev. D 7 2333
[44] Hawking S W 1976 Phys. Rev. D 13 191
[45] Gruber C, Luongo O and Quevedo H arXiv:1603.09443v2[gr-qc]
[46] Davies P C W 1977 Proc. Roy. Soc. Lond. A 353 499
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!