Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117101    DOI: 10.1088/1674-1056/25/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver

Li Huang(黄理)
Science and Technology on Surface Physics and Chemistry Laboratory, China Academy of Engineering Physics, Jiangyou 621908, China
Abstract  

Inspired by the recently proposed Legendre orthogonal polynomial representation for imaginary-time Green's functions G(τ), we develop an alternate and superior representation for G(τ) and implement it in the hybridization expansion continuous-time quantum Monte Carlo impurity solver. This representation is based on the kernel polynomial method, which introduces some integral kernel functions to filter the numerical fluctuations caused by the explicit truncations of polynomial expansion series and can improve the computational precision significantly. As an illustration of the new representation, we re-examine the imaginary-time Green's functions of the single-band Hubbard model in the framework of dynamical mean-field theory. The calculated results suggest that with carefully chosen integral kernel functions, whether the system is metallic or insulating, the Gibbs oscillations found in the previous Legendre orthogonal polynomial representation have been vastly suppressed and remarkable corrections to the measured Green's functions have been obtained.

Keywords:  kernel polynomial representation      imaginary-time Green'      s function      continuous-time quantum Monte Carlo impurity solver      dynamical mean-field theory  
Received:  25 March 2016      Revised:  08 July 2016      Accepted manuscript online: 
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11504340).

Corresponding Authors:  Li Huang     E-mail:  lihuang.dmft@gmail.com

Cite this article: 

Li Huang(黄理) Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver 2016 Chin. Phys. B 25 117101

[1] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[2] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[3] Held K 2007 Adv. Phys. 56 829
[4] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
[5] Toschi A, Katanin A A and Held K 2007 Phys. Rev. B 75 045118
[6] Rubtsov A N, Katsnelson M I and Lichtenstein A I 2008 Phys. Rev. B 77 033101
[7] Emanuel G, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 349
[8] Werner P, Comanac A, and de'Medici L, Troyer M and Millis A J 2006 Phys. Rev. Lett. 97 076405
[9] Werner P and Millis A J 2006 Phys. Rev. B 74 155107
[10] Haule K 2007 Phys. Rev. B 75 155113
[11] Gull E, Werner P, Parcollet O and Troyer M 2008 Europhys. Lett. 82 57003
[12] Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122
[13] Gull E, Werner P, Millis A J and Troyer M 2007 Phys. Rev. B 76 235123
[14] Blumer N 2007 Phys. Rev. B 76 205120
[15] Kune Å J 2011 Phys. Rev. B 83 085102
[16] Boehnke L, Hafermann H, Ferrero M, Lechermann F and Parcollet O 2011 Phys. Rev. B 84 075145
[17] Deng X Y, Ferrero M, Mravlje J, Aichhorn M and Georges A 2012 Phys. Rev. B 85 125137
[18] Boehnke L and Lechermann F 2012 Phys. Rev. B 85 115128
[19] Weiße A, Wellein G, Alvermann A and Fehske H 2006 Rev. Mod. Phys. 78 275
[20] Gradshteyn I S, Ryzhik I M, Jeffrey A and Zwillinger D 2000 Table of Integrals, Series, and Products, (6th Edn) (Amsterdam Academic)
[21] Huang L, Wang Y L, Meng Z Y, Du L, Werner P and Dai X 2015 Computer Physics Communications 195 140
[22] Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133
[1] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[2] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[3] Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction
Yi Guo(郭逸), Peng Zhao(赵朋), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(4): 047202.
[4] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[5] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[6] Detection of spin current through a quantum dot with Majorana bound states
Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧). Chin. Phys. B, 2021, 30(10): 100302.
[7] Charge structure factors of doped armchair nanotubes in the presence of electron-phonon interaction
Hamed Rezania, Farshad Azizi. Chin. Phys. B, 2020, 29(9): 096501.
[8] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[9] Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes
Zi-Qun Wang(王子群), Fei Tang(唐菲), Mi-Mi Dong(董密密), Ming-Lang Wang(王明郎), Gui-Chao Hu(胡贵超), Jian-Cai Leng(冷建材), Chuan-Kui Wang(王传奎), Guang-Ping Zhang(张广平). Chin. Phys. B, 2020, 29(6): 067202.
[10] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[11] Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影). Chin. Phys. B, 2020, 29(12): 127201.
[12] Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes
Ming-Lang Wang(王明郎) and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2020, 29(11): 113101.
[13] Lamb waves topological imaging combining with Green's function retrieval theory to detect near filed defects in isotropic plates
Hui Zhang(张辉), Hai-Yan Zhang(张海燕), Meng-Yun Xu(徐梦云), Guo-Peng Fan(范国鹏), Wen-Fa Zhu(朱文发), Xiao-Dong Chai(柴晓冬). Chin. Phys. B, 2019, 28(7): 074301.
[14] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[15] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
No Suggested Reading articles found!