Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107504    DOI: 10.1088/1674-1056/25/10/107504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder

E Mehran1, S Farjami Shayesteh1, M Sheykhan2
1 Nanostructures Laboratory, Department of Physics, University of Guilan, 41335-1914, Rasht, Iran;
2 Department of Chemistry, University of Guilan, 41335-1914, Rasht, Iran
Abstract  The structural and magnetic properties of the synthesized pure and functionalized CoFe2O4 magnetic nanoparticles (NPs) are studied by analyzing the results from the x-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR spectroscopy, thermogravimetry (TG), and vibrating sample magnetometer (VSM). To extract the structure and lattice parameters from the XRD analysis results, we first apply the pseudo-Voigt model function to the experimental data obtained from XRD analysis and then the Rietveld algorithm is used in order to optimize the model function to estimate the true intensity values. Our simulated intensities are in good agreement with the experimental peaks, therefore, all structural parameters such as crystallite size and lattice constant are achieved through this simulation. Magnetic analysis reveals that the synthesized functionalized NPs have a saturation magnetization almost equal to that of pure nanoparticles (PNPs). It is also found that the presence of the turmeric causes a small reduction in coercivity of the functionalized NPs in comparison with PNP. Our TGA and FTIR results show that the turmeric is bonded very well to the surface of the NPs. So it can be inferred that a nancomposite (NC) powder of turmeric and nanoparticles is produced. As an application, the anti-arsenic characteristic of turmeric makes the synthesized functionalized NPs or NC powder a good candidate for arsenic removal from polluted industrial waste water.
Keywords:  cobalt ferrite nanoparticles      structural properties      magnetic properties      turmeric  
Received:  20 April 2016      Revised:  06 June 2016      Accepted manuscript online: 
PACS:  75.75.Cd (Fabrication of magnetic nanostructures)  
  81.07.Bc (Nanocrystalline materials)  
  81.16.Be (Chemical synthesis methods)  
Fund: Project supported by the University of Guilan and the Iran Nanotechnology Initiative Council.
Corresponding Authors:  S Farjami Shayesteh     E-mail:  saber@guilan.ac.ir

Cite this article: 

E Mehran, S Farjami Shayesteh, M Sheykhan Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder 2016 Chin. Phys. B 25 107504

[1] Hiroaki Mamiya and Balachandran Jeyadevan 2011 Sci. Rep. 1 157
[2] Daniel J B Bechstein, Jung-Rok Lee, Chin Chun Ooi, Adi W Gani, Kyunglok Kim, Robert J Wilson and Shan X Wang 2015 Sci. Rep. 5 11693
[3] Lin A L, Rodrigues J N B, Su C L, Milletari M, Loh K P, Wu T, Chen W, Castro Neto A H, Adam S and Wee A T S 2015 Sci. Rep. 5 11430
[4] Luo N Q, Huang Z Y, Li L, Shao Y Z and Chen D H 2013 Chin. Phys. Lett. 30 038101
[5] Wang M W, Chang Y Q and Sun Q L 2014 Chin. Phys. Lett. 31 127501
[6] Gregor Ferk, Peter Krajnc, Anton Hamler, Alenka Mertelj, Federico Cebollada, Miha Drofenik and Darja Lisjak 2015 Sci. Rep. 5 11395
[7] Jungho Shin, KangYeol Lee, TaehanYeo and WonjoonChoi 2016 Sci. Rep. 6 21792
[8] Pablo Guardia, Riccardo Di Corato, Lenaic Lartigue, Claire Wilhelm, Ana Espinosa, Mar Garcia-Hernandez, Florence Gazeau, Liberato Manna and Teresa Pellegrino 2012 ACS Nano 6 3080
[9] Wei Wu, Changzhong Jiang and Vellaisamy A L Roy 2015 Nanoscale 7 38
[10] Wei Wu, Zhaohui Wu, Taekyung Yu, Changzhong Jiang and WooSik Kim 2015 Sci. Technol. Adv. Mater. 16 023501
[11] Vasiliev A N, Gulliver E A, Khinast J G and Roman R E 2009 Surf. Coat. Technol. 203 2841
[12] Bruce I J and Sen T 2005 Langmuir 21 7029
[13] Kumar E R, Jayaprakash R and Patel R 2013 Superlattices and Microstructures 62 277
[14] Wu W, He Q and Jiang C 2008 Nanoscale Res. Lett. 3 397
[15] Dietricha S, Chandraa S, Georgia C, Thomasc S, Makarovc D, Schulzed S, Hietscholdd M, Albrechtc M, Bahadurb D and Langa H 2012 J. Mater. Chem. Phys. 132 292
[16] Danhier F, Ansorena E, Silva J M, Coco R, Breton A L and Préat V 2012 J. Control Release 161 505
[17] Lu Y, Yin Y, Mayers B T and Xia Y 2002 Nano Lett. 2 183
[18] Davies R, Schurr G A, Meenan P, Nelson R D, Bergna H E, Brevett C A S and Goldbaum R H 1998 Adv. Mater. 10 1264
[19] Tanaka Y, Saita S and Maenosono S 2008 Appl. Phys. Lett. 92 093117
[20] Zhang Y, Kohler N and Zhang M 2002 Biomaterials 23 1553
[21] Lacava L M, Lacava Z G M, da Silva M F, Silva O, Chaves S B, Azevedo R B, Pelegrini F, Gansau C, Buske N, Sabolovic D and Morais P C 2001 Biophys. J. 80 2483
[22] Bulte J W and de Cuyper M 2003 Methods Enzymol. 373 175
[23] Wang S H, Shi X, Antwerp M V, Cao Z, Swanson S D, Bi X and Baker J R 2007 Adv. Funct. Mater. 17 3043
[24] Strable E, Bulte J W M, Moskowitz B, Vivekanandan K, Allen M and Douglas T 2001 Chem. Mater. 13 2201
[25] Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik C N and Markovich G 2001 Langmuir 17 7907
[26] Sahoo Y, Goodarzi A, Swihart M T, Ohulchanskyy T Y, Kaur N, Furlani E P and Prasad P N 2005 J. Phys. Chem. B 109 3879
[27] Zhu B, Yang P, Yu H, Yan L, Wei Q and Du B 2013 Nanotechnology 24 495
[28] Dietrich S, Chandra S, Georgi C, Thomas S, Makarov D, Schulzed S, Hietschold M, Albrecht M, Bahadur D and Lang H 2012 Mater. Chem. Phys. 132 292
[29] Vaishnava P P, Tackett R, Dixit A, Sudakar C, Naik R and Lawes G 2007 J. Appl. Phys. 102 063914
[30] Lakshmanan R, Okoli C, Boutonnet M, Järås S and Rajarao G K 2013 Bioresour. Technol. 129 612
[31] Zhang C, Wangler B, Morgenstern B, Zentgraf H, Eisenhut M, Untenecker H, Kruger R, Huss R, Seliger C, Semmler W and Kiessling F 2007 Langmuir 23 1427
[32] Toby B 2006 Powder Diffraction 21 67
[33] Sahu R and Saxena J 2014 Indian J. Adv. Chem. Sci. 2 300
[34] Kim H J, Kim D J, Karthick S N, Hemalatha K V, Raj C J, Ok S and Choe Y 2013 Int. J. Electrochem. Sci. 8 8320
[35] Cannas C, Ardu A, Musinu A, Peddis D and Piccaluga G 2008 Chem. Mater. 20 6364
[36] Wang Y, Sun H, Ang H M, Tadé M O and Wang S 2014 J. Colloid. Interface Sci. 433 68
[37] Oliveira G E, Clarindo J E S, Santo K S E and Souza F G Jr 2013 Mater. Res. 16 668
[38] Zhao L, Zhang H, Xing Y, Song S, Yu S, Shi W, Guo X, Yang J, Lei Y and Cao F 2008 J. Solid State Chem. 181 245
[39] Navard P and Haudin J M 1984 J. Therm. Anal. Calorim. 29 405
[1] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[2] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[3] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[6] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[7] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[8] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[9] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[10] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[11] Electronic and magnetic properties of single-layer and double-layer VX2 (X=Cl, Br) under biaxial stress
Xing Li(李兴), Yanfeng Ge(盖彦峰), Jun Li(李军), Wenhui Wan(万文辉), and Yong Liu(刘永). Chin. Phys. B, 2021, 30(10): 107305.
[12] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[13] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[14] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[15] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
No Suggested Reading articles found!