CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder |
E Mehran1, S Farjami Shayesteh1, M Sheykhan2 |
1 Nanostructures Laboratory, Department of Physics, University of Guilan, 41335-1914, Rasht, Iran; 2 Department of Chemistry, University of Guilan, 41335-1914, Rasht, Iran |
|
|
Abstract The structural and magnetic properties of the synthesized pure and functionalized CoFe2O4 magnetic nanoparticles (NPs) are studied by analyzing the results from the x-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR spectroscopy, thermogravimetry (TG), and vibrating sample magnetometer (VSM). To extract the structure and lattice parameters from the XRD analysis results, we first apply the pseudo-Voigt model function to the experimental data obtained from XRD analysis and then the Rietveld algorithm is used in order to optimize the model function to estimate the true intensity values. Our simulated intensities are in good agreement with the experimental peaks, therefore, all structural parameters such as crystallite size and lattice constant are achieved through this simulation. Magnetic analysis reveals that the synthesized functionalized NPs have a saturation magnetization almost equal to that of pure nanoparticles (PNPs). It is also found that the presence of the turmeric causes a small reduction in coercivity of the functionalized NPs in comparison with PNP. Our TGA and FTIR results show that the turmeric is bonded very well to the surface of the NPs. So it can be inferred that a nancomposite (NC) powder of turmeric and nanoparticles is produced. As an application, the anti-arsenic characteristic of turmeric makes the synthesized functionalized NPs or NC powder a good candidate for arsenic removal from polluted industrial waste water.
|
Received: 20 April 2016
Revised: 06 June 2016
Accepted manuscript online:
|
PACS:
|
75.75.Cd
|
(Fabrication of magnetic nanostructures)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
81.16.Be
|
(Chemical synthesis methods)
|
|
Fund: Project supported by the University of Guilan and the Iran Nanotechnology Initiative Council. |
Corresponding Authors:
S Farjami Shayesteh
E-mail: saber@guilan.ac.ir
|
Cite this article:
E Mehran, S Farjami Shayesteh, M Sheykhan Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder 2016 Chin. Phys. B 25 107504
|
[1] |
Hiroaki Mamiya and Balachandran Jeyadevan 2011 Sci. Rep. 1 157
|
[2] |
Daniel J B Bechstein, Jung-Rok Lee, Chin Chun Ooi, Adi W Gani, Kyunglok Kim, Robert J Wilson and Shan X Wang 2015 Sci. Rep. 5 11693
|
[3] |
Lin A L, Rodrigues J N B, Su C L, Milletari M, Loh K P, Wu T, Chen W, Castro Neto A H, Adam S and Wee A T S 2015 Sci. Rep. 5 11430
|
[4] |
Luo N Q, Huang Z Y, Li L, Shao Y Z and Chen D H 2013 Chin. Phys. Lett. 30 038101
|
[5] |
Wang M W, Chang Y Q and Sun Q L 2014 Chin. Phys. Lett. 31 127501
|
[6] |
Gregor Ferk, Peter Krajnc, Anton Hamler, Alenka Mertelj, Federico Cebollada, Miha Drofenik and Darja Lisjak 2015 Sci. Rep. 5 11395
|
[7] |
Jungho Shin, KangYeol Lee, TaehanYeo and WonjoonChoi 2016 Sci. Rep. 6 21792
|
[8] |
Pablo Guardia, Riccardo Di Corato, Lenaic Lartigue, Claire Wilhelm, Ana Espinosa, Mar Garcia-Hernandez, Florence Gazeau, Liberato Manna and Teresa Pellegrino 2012 ACS Nano 6 3080
|
[9] |
Wei Wu, Changzhong Jiang and Vellaisamy A L Roy 2015 Nanoscale 7 38
|
[10] |
Wei Wu, Zhaohui Wu, Taekyung Yu, Changzhong Jiang and WooSik Kim 2015 Sci. Technol. Adv. Mater. 16 023501
|
[11] |
Vasiliev A N, Gulliver E A, Khinast J G and Roman R E 2009 Surf. Coat. Technol. 203 2841
|
[12] |
Bruce I J and Sen T 2005 Langmuir 21 7029
|
[13] |
Kumar E R, Jayaprakash R and Patel R 2013 Superlattices and Microstructures 62 277
|
[14] |
Wu W, He Q and Jiang C 2008 Nanoscale Res. Lett. 3 397
|
[15] |
Dietricha S, Chandraa S, Georgia C, Thomasc S, Makarovc D, Schulzed S, Hietscholdd M, Albrechtc M, Bahadurb D and Langa H 2012 J. Mater. Chem. Phys. 132 292
|
[16] |
Danhier F, Ansorena E, Silva J M, Coco R, Breton A L and Préat V 2012 J. Control Release 161 505
|
[17] |
Lu Y, Yin Y, Mayers B T and Xia Y 2002 Nano Lett. 2 183
|
[18] |
Davies R, Schurr G A, Meenan P, Nelson R D, Bergna H E, Brevett C A S and Goldbaum R H 1998 Adv. Mater. 10 1264
|
[19] |
Tanaka Y, Saita S and Maenosono S 2008 Appl. Phys. Lett. 92 093117
|
[20] |
Zhang Y, Kohler N and Zhang M 2002 Biomaterials 23 1553
|
[21] |
Lacava L M, Lacava Z G M, da Silva M F, Silva O, Chaves S B, Azevedo R B, Pelegrini F, Gansau C, Buske N, Sabolovic D and Morais P C 2001 Biophys. J. 80 2483
|
[22] |
Bulte J W and de Cuyper M 2003 Methods Enzymol. 373 175
|
[23] |
Wang S H, Shi X, Antwerp M V, Cao Z, Swanson S D, Bi X and Baker J R 2007 Adv. Funct. Mater. 17 3043
|
[24] |
Strable E, Bulte J W M, Moskowitz B, Vivekanandan K, Allen M and Douglas T 2001 Chem. Mater. 13 2201
|
[25] |
Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik C N and Markovich G 2001 Langmuir 17 7907
|
[26] |
Sahoo Y, Goodarzi A, Swihart M T, Ohulchanskyy T Y, Kaur N, Furlani E P and Prasad P N 2005 J. Phys. Chem. B 109 3879
|
[27] |
Zhu B, Yang P, Yu H, Yan L, Wei Q and Du B 2013 Nanotechnology 24 495
|
[28] |
Dietrich S, Chandra S, Georgi C, Thomas S, Makarov D, Schulzed S, Hietschold M, Albrecht M, Bahadur D and Lang H 2012 Mater. Chem. Phys. 132 292
|
[29] |
Vaishnava P P, Tackett R, Dixit A, Sudakar C, Naik R and Lawes G 2007 J. Appl. Phys. 102 063914
|
[30] |
Lakshmanan R, Okoli C, Boutonnet M, Järås S and Rajarao G K 2013 Bioresour. Technol. 129 612
|
[31] |
Zhang C, Wangler B, Morgenstern B, Zentgraf H, Eisenhut M, Untenecker H, Kruger R, Huss R, Seliger C, Semmler W and Kiessling F 2007 Langmuir 23 1427
|
[32] |
Toby B 2006 Powder Diffraction 21 67
|
[33] |
Sahu R and Saxena J 2014 Indian J. Adv. Chem. Sci. 2 300
|
[34] |
Kim H J, Kim D J, Karthick S N, Hemalatha K V, Raj C J, Ok S and Choe Y 2013 Int. J. Electrochem. Sci. 8 8320
|
[35] |
Cannas C, Ardu A, Musinu A, Peddis D and Piccaluga G 2008 Chem. Mater. 20 6364
|
[36] |
Wang Y, Sun H, Ang H M, Tadé M O and Wang S 2014 J. Colloid. Interface Sci. 433 68
|
[37] |
Oliveira G E, Clarindo J E S, Santo K S E and Souza F G Jr 2013 Mater. Res. 16 668
|
[38] |
Zhao L, Zhang H, Xing Y, Song S, Yu S, Shi W, Guo X, Yang J, Lei Y and Cao F 2008 J. Solid State Chem. 181 245
|
[39] |
Navard P and Haudin J M 1984 J. Therm. Anal. Calorim. 29 405
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|