Special Issue:
Virtual Special Topic — High temperature superconductivity
|
|
|
Superconductivity in Sm-doped CaFe2As2 single crystals |
Dong-Yun Chen(陈东云)1, Bin-Bin Ruan(阮彬彬)1, Jia Yu(于佳)1, Qi Guo(郭琦)1, Xiao-Chuan Wang(王小川)1, Qing-Ge Mu(穆青隔)1, Bo-Jin Pan(潘伯津)1, Tong Liu(刘通)1, Gen-Fu Chen(陈根富)1, 2, Zhi-An Ren(任治安)1,2 |
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China |
|
|
Abstract In this article, the Sm-doping single crystals Ca1-xSmxFe2As2 (x=0~0.2) were prepared by the CaAs flux method, and followed by a rapid quenching treatment after the high temperature growth. The samples were characterized by structural, resistive, and magnetic measurements. The successful Sm-substitution was revealed by the reduction of the lattice parameter c, due to the smaller ionic radius of Sm3+ than Ca2+. Superconductivity was observed in all samples with onset Tc varying from 27 K to 44 K upon Sm-doping. The coexistence of a collapsed phase transition and the superconducting transition was found for the lower Sm-doping samples. Zero resistivity and substantial superconducting volume fraction only happen in higher Sm-doping crystals with the nominal x >0.10. The doping dependences of the c-axis length and onset Tc were summarized. The high-Tc observed in these quenched crystals may be attributed to simultaneous tuning of electron carriers doping and strain effect caused by lattice reduction of Sm-substitution.
|
Received: 22 April 2016
Revised: 26 April 2016
Accepted manuscript online:
|
PACS:
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.72.Ek
|
(Electron-doped)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474339), the National Basic Research Program of China (Grant Nos. 2010CB923000 and 2011CBA00100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020100). |
Corresponding Authors:
Zhi-An Ren
E-mail: renzhian@iphy.ac.cn
|
Cite this article:
Dong-Yun Chen(陈东云), Bin-Bin Ruan(阮彬彬), Jia Yu(于佳), Qi Guo(郭琦), Xiao-Chuan Wang(王小川), Qing-Ge Mu(穆青隔), Bo-Jin Pan(潘伯津), Tong Liu(刘通), Gen-Fu Chen(陈根富), Zhi-An Ren(任治安) Superconductivity in Sm-doped CaFe2As2 single crystals 2016 Chin. Phys. B 25 067403
|
[1] |
Howard C J and Carpenter M A 2012 Acta Crystallogr. B 68 209
|
[2] |
Jiang H, Sun Y L, Xu Z A and Cao G H 2013 Chin. Phys. B 22 087410
|
[3] |
Ni N, Nandi S, Kreyssig A, Goldman A I, Mun E D, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 014523
|
[4] |
Goldman A I, Argyriou D N, Ouladdiaf B, Chatterji T, Kreyssig A, Nandi S, Ni N, Bud'ko S L, Canfield P C and McQueeney R J 2008 Phys. Rev. B 78 100506
|
[5] |
Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
|
[6] |
Matsubayashi K, Katayama N, Ohgushi K, Yamada A, Munakata K, Matsumoto T and Uwatoko Y 2009 J. Phys. Soc. Jpn. 78 073706
|
[7] |
Li Z C, Lu W, Dong X L, Zhou F and Zhao Z X 2010 Chin. Phys. B 19 026103
|
[8] |
Zhao K, Liu Q Q, Wang X C, Deng Z, Lv Y X, Zhu J L, Li F Y and Jin C Q 2010 J. Phys.: Condens. Matter 22 222203
|
[9] |
Wang D M, Shangguan X C, He J B, Zhao L X, Long Y J, Wang P P and Wang L 2013 J. Supercond. Novel Magn. 26 2121
|
[10] |
Kasahara S, Shibauchi T, Hashimoto K, Nakai Y, Ikeda H, Terashima T and Matsuda Y 2011 Phys. Rev. B 83 060505
|
[11] |
Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
|
[12] |
Saha S R, Butch N P, Drye T, Magill J, Ziemak S, Kirshenbaum K, Zavalij P Y, Lynn J W and Paglione J 2012 Phys. Rev. B 85 024525
|
[13] |
Lv B, Deng L, Gooch M, Wei F, Sun Y, Meen J K, Xue Y Y, Lorenz B and Chu C W 2011 Proc. Natl. Acad. Sci. USA 108 15705
|
[14] |
Gao Z, Qi Y, Wang L, Wang D, Zhang X, Yao C, Wang C and Ma Y 2011 Europhys. Lett. 95 67002
|
[15] |
Qi Y, Gao Z, Wang L, Wang D, Zhang X, Yao C, Wang C, Wang C and Ma Y 2012 Supercond. Sci. Technol. 25 045007
|
[16] |
Ying J J, Liang J C, Luo X G, Wang X F, Yan Y J, Zhang M, Wang A F, Xiang Z J, Ye G J, Cheng P and Chen X H 2012 Phys. Rev. B 85 144514
|
[17] |
Zhou W, Yuan F F, Zhuang J C, Sun Y, Ding Y, Cui L J, Bai J and Shi Z X 2013 Supercond. Sci. Technol. 26 095003
|
[18] |
Huang Y B, Richard P, Wang J H, Wang X P, Shi X, Xu N, Wu Z, Li A, Yin J X, Qian T, Lv B, Chu C W, Pan S H, Shi M and Ding H 2013 Chin. Phys. Lett. 30 017402
|
[19] |
Sun Y, Zhou W, Cui L J, Zhuang J C, Ding Y, Yuan F F, Bai J and Shi Z X 2013 AIP Adv. 3 102120
|
[20] |
Chu C W, Lv B, Deng L Z, Lorenz B, Jawdat B, Gooch M, Shrestha K, Zhao K, Zhu X Y, Xue Y Y and Wei F Y 2013 J. Phys: Conf. Ser. 449 012014
|
[21] |
Tamegai T, Ding Q P, Ishibashi T and Nakajima Y 2013 Physica C 484 31
|
[22] |
Gofryk K, Pan M, Cantoni C, Saparov B, Mitchell J E and Sefat A S 2014 Phys. Rev. Lett. 112 047005
|
[23] |
Deng L Z, Lv B, Zhao K, Wei F Y, Xue Y Y, Wu Z and Chu C W 2016 Phys. Rev. B 93 054513
|
[24] |
Torikachvili M S, Bud'ko S L, Ni N and Canfield P C 2008 Phys. Rev. Lett. 101 057006
|
[25] |
Kreyssig A, Green M A, Lee Y, Samolyuk G D, Zajdel P, Lynn J W, Bud'ko S L, Torikachvili M S, Ni N, Nandi S, Leão J B, Poulton S J, Argyriou D N, Harmon B N, McQueeney R J, Canfield P C and Goldman A I 2008 Phys. Rev. B 78 184517
|
[26] |
Ran S, Bud'ko S L, Pratt D K, Kreyssig A, Kim M G, Kramer M J, Ryan D H, Rowan-Weetaluktuk W N, Furukawa Y, Roy B, Goldman A I and Canfield P C 2011 Phys. Rev. B 83 144517
|
[27] |
Zhao K, Stingl C, Manna R S, Jin C Q and Gegenwart P 2015 Phys. Rev. B 92 235132
|
[28] |
Danura M, Kudo K, Oshiro Y, Araki S, C. Kobayashi T and Nohara M 2011 J. Phys. Soc. Jpn. 80 103701
|
[29] |
Ma L, Ji G F, Dai J, Saha S R, Drye T, Paglione J and Yu W Q 2013 Chin. Phys. B 22 057401
|
[30] |
Yang R, Le C, Zhang L, Xu B, Zhang W, Nadeem K, Xiao H, Hu J and Qiu X 2015 Phys. Rev. B 91 224507
|
[31] |
Saha S R, Drye T, Goh S K, Klintberg L E, Silver J M, Grosche F M, Sutherland M, Munsie T J S, Luke G M, Pratt D K, Lynn J W and Paglione J 2014 Phys. Rev. B 89 134516
|
[32] |
Xu D F, Shen D W, Jiang J, Ye Z R, Liu X, Niu X H, Xu H C, Yan Y J, Zhang T, Xie B P and Feng D L 2014 Phys. Rev. B 90 214519
|
[33] |
Kudo K, Iba K, Takasuga M, Kitahama Y, Matsumura J, Danura M, Nogami Y and Nohara M 2013 Sci. Rep. 3 1478
|
[34] |
Wei F, Lv B, Deng L, Meen J K, Xue Y Y and Chu C W 2014 Philos. Mag. 94 2562
|
[35] |
Chen D Y, Yu J, Ruan B B, Guo Q, Zhang L, Mu Q G, Wang X C, Pan B J, Chen G F and Ren Z A 2016 arXiv: 1604.04964
|
[36] |
Gao B, Li X, Ji Q, Mu G, Li W, Hu T, Li A and Xie X 2014 New J. Phys. 16 113024
|
[37] |
Gurevich A 2003 Phys. Rev. B 67 184515
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|