Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067403    DOI: 10.1088/1674-1056/25/6/067403
Special Issue: Virtual Special Topic — High temperature superconductivity
RAPID COMMUNICATION Prev   Next  

Superconductivity in Sm-doped CaFe2As2 single crystals

Dong-Yun Chen(陈东云)1, Bin-Bin Ruan(阮彬彬)1, Jia Yu(于佳)1, Qi Guo(郭琦)1, Xiao-Chuan Wang(王小川)1, Qing-Ge Mu(穆青隔)1, Bo-Jin Pan(潘伯津)1, Tong Liu(刘通)1, Gen-Fu Chen(陈根富)1, 2, Zhi-An Ren(任治安)1,2
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  

In this article, the Sm-doping single crystals Ca1-xSmxFe2As2 (x=0~0.2) were prepared by the CaAs flux method, and followed by a rapid quenching treatment after the high temperature growth. The samples were characterized by structural, resistive, and magnetic measurements. The successful Sm-substitution was revealed by the reduction of the lattice parameter c, due to the smaller ionic radius of Sm3+ than Ca2+. Superconductivity was observed in all samples with onset Tc varying from 27 K to 44 K upon Sm-doping. The coexistence of a collapsed phase transition and the superconducting transition was found for the lower Sm-doping samples. Zero resistivity and substantial superconducting volume fraction only happen in higher Sm-doping crystals with the nominal x >0.10. The doping dependences of the c-axis length and onset Tc were summarized. The high-Tc observed in these quenched crystals may be attributed to simultaneous tuning of electron carriers doping and strain effect caused by lattice reduction of Sm-substitution.

Keywords:  superconductivity      Sm-doping      CaFe2As2      collapsed structure  
Received:  22 April 2016      Revised:  26 April 2016      Accepted manuscript online: 
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.72.Ek (Electron-doped)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11474339), the National Basic Research Program of China (Grant Nos. 2010CB923000 and 2011CBA00100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020100).

Corresponding Authors:  Zhi-An Ren     E-mail:  renzhian@iphy.ac.cn

Cite this article: 

Dong-Yun Chen(陈东云), Bin-Bin Ruan(阮彬彬), Jia Yu(于佳), Qi Guo(郭琦), Xiao-Chuan Wang(王小川), Qing-Ge Mu(穆青隔), Bo-Jin Pan(潘伯津), Tong Liu(刘通), Gen-Fu Chen(陈根富), Zhi-An Ren(任治安) Superconductivity in Sm-doped CaFe2As2 single crystals 2016 Chin. Phys. B 25 067403

[1] Howard C J and Carpenter M A 2012 Acta Crystallogr. B 68 209
[2] Jiang H, Sun Y L, Xu Z A and Cao G H 2013 Chin. Phys. B 22 087410
[3] Ni N, Nandi S, Kreyssig A, Goldman A I, Mun E D, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 014523
[4] Goldman A I, Argyriou D N, Ouladdiaf B, Chatterji T, Kreyssig A, Nandi S, Ni N, Bud'ko S L, Canfield P C and McQueeney R J 2008 Phys. Rev. B 78 100506
[5] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[6] Matsubayashi K, Katayama N, Ohgushi K, Yamada A, Munakata K, Matsumoto T and Uwatoko Y 2009 J. Phys. Soc. Jpn. 78 073706
[7] Li Z C, Lu W, Dong X L, Zhou F and Zhao Z X 2010 Chin. Phys. B 19 026103
[8] Zhao K, Liu Q Q, Wang X C, Deng Z, Lv Y X, Zhu J L, Li F Y and Jin C Q 2010 J. Phys.: Condens. Matter 22 222203
[9] Wang D M, Shangguan X C, He J B, Zhao L X, Long Y J, Wang P P and Wang L 2013 J. Supercond. Novel Magn. 26 2121
[10] Kasahara S, Shibauchi T, Hashimoto K, Nakai Y, Ikeda H, Terashima T and Matsuda Y 2011 Phys. Rev. B 83 060505
[11] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[12] Saha S R, Butch N P, Drye T, Magill J, Ziemak S, Kirshenbaum K, Zavalij P Y, Lynn J W and Paglione J 2012 Phys. Rev. B 85 024525
[13] Lv B, Deng L, Gooch M, Wei F, Sun Y, Meen J K, Xue Y Y, Lorenz B and Chu C W 2011 Proc. Natl. Acad. Sci. USA 108 15705
[14] Gao Z, Qi Y, Wang L, Wang D, Zhang X, Yao C, Wang C and Ma Y 2011 Europhys. Lett. 95 67002
[15] Qi Y, Gao Z, Wang L, Wang D, Zhang X, Yao C, Wang C, Wang C and Ma Y 2012 Supercond. Sci. Technol. 25 045007
[16] Ying J J, Liang J C, Luo X G, Wang X F, Yan Y J, Zhang M, Wang A F, Xiang Z J, Ye G J, Cheng P and Chen X H 2012 Phys. Rev. B 85 144514
[17] Zhou W, Yuan F F, Zhuang J C, Sun Y, Ding Y, Cui L J, Bai J and Shi Z X 2013 Supercond. Sci. Technol. 26 095003
[18] Huang Y B, Richard P, Wang J H, Wang X P, Shi X, Xu N, Wu Z, Li A, Yin J X, Qian T, Lv B, Chu C W, Pan S H, Shi M and Ding H 2013 Chin. Phys. Lett. 30 017402
[19] Sun Y, Zhou W, Cui L J, Zhuang J C, Ding Y, Yuan F F, Bai J and Shi Z X 2013 AIP Adv. 3 102120
[20] Chu C W, Lv B, Deng L Z, Lorenz B, Jawdat B, Gooch M, Shrestha K, Zhao K, Zhu X Y, Xue Y Y and Wei F Y 2013 J. Phys: Conf. Ser. 449 012014
[21] Tamegai T, Ding Q P, Ishibashi T and Nakajima Y 2013 Physica C 484 31
[22] Gofryk K, Pan M, Cantoni C, Saparov B, Mitchell J E and Sefat A S 2014 Phys. Rev. Lett. 112 047005
[23] Deng L Z, Lv B, Zhao K, Wei F Y, Xue Y Y, Wu Z and Chu C W 2016 Phys. Rev. B 93 054513
[24] Torikachvili M S, Bud'ko S L, Ni N and Canfield P C 2008 Phys. Rev. Lett. 101 057006
[25] Kreyssig A, Green M A, Lee Y, Samolyuk G D, Zajdel P, Lynn J W, Bud'ko S L, Torikachvili M S, Ni N, Nandi S, Leão J B, Poulton S J, Argyriou D N, Harmon B N, McQueeney R J, Canfield P C and Goldman A I 2008 Phys. Rev. B 78 184517
[26] Ran S, Bud'ko S L, Pratt D K, Kreyssig A, Kim M G, Kramer M J, Ryan D H, Rowan-Weetaluktuk W N, Furukawa Y, Roy B, Goldman A I and Canfield P C 2011 Phys. Rev. B 83 144517
[27] Zhao K, Stingl C, Manna R S, Jin C Q and Gegenwart P 2015 Phys. Rev. B 92 235132
[28] Danura M, Kudo K, Oshiro Y, Araki S, C. Kobayashi T and Nohara M 2011 J. Phys. Soc. Jpn. 80 103701
[29] Ma L, Ji G F, Dai J, Saha S R, Drye T, Paglione J and Yu W Q 2013 Chin. Phys. B 22 057401
[30] Yang R, Le C, Zhang L, Xu B, Zhang W, Nadeem K, Xiao H, Hu J and Qiu X 2015 Phys. Rev. B 91 224507
[31] Saha S R, Drye T, Goh S K, Klintberg L E, Silver J M, Grosche F M, Sutherland M, Munsie T J S, Luke G M, Pratt D K, Lynn J W and Paglione J 2014 Phys. Rev. B 89 134516
[32] Xu D F, Shen D W, Jiang J, Ye Z R, Liu X, Niu X H, Xu H C, Yan Y J, Zhang T, Xie B P and Feng D L 2014 Phys. Rev. B 90 214519
[33] Kudo K, Iba K, Takasuga M, Kitahama Y, Matsumura J, Danura M, Nogami Y and Nohara M 2013 Sci. Rep. 3 1478
[34] Wei F, Lv B, Deng L, Meen J K, Xue Y Y and Chu C W 2014 Philos. Mag. 94 2562
[35] Chen D Y, Yu J, Ruan B B, Guo Q, Zhang L, Mu Q G, Wang X C, Pan B J, Chen G F and Ren Z A 2016 arXiv: 1604.04964
[36] Gao B, Li X, Ji Q, Mu G, Li W, Hu T, Li A and Xie X 2014 New J. Phys. 16 113024
[37] Gurevich A 2003 Phys. Rev. B 67 184515
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[8] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[9] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[10] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[11] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[12] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[13] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[14] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[15] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
No Suggested Reading articles found!