Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067106    DOI: 10.1088/1674-1056/25/6/067106
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hybrid density functional study on lattice vibration, thermodynamic properties, and chemical bonding of plutonium monocarbide

Rong Yang(杨荣)1,2, Bin Tang(唐斌)3, Tao Gao(高涛)1, Bing-Yun Ao(敖冰云)4
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
3 Institute of Finance & Trade, Chongqing City Management College, Chongqing 401331, China;
4 Science and Technology on Surface Physics and Chemistry Laboratory, P. O. Box 718-35, Mianyang 621907, China
Abstract  

Hybrid density functional theory is employed to systematically investigate the structural, magnetic, vibrational, thermodynamic properties of plutonium monocarbide (PuC and PuC0.75). For comparison, the results obtained by DFT, DFT+U are also given. For PuC and PuC0.75, Fock-0.25 hybrid functional gives the best lattice constants and predicts the correct ground states of antiferromagnetic (AFM) structure. The calculated phonon spectra suggest that PuC and PuC0.75 are dynamically stable. Values of the Helmholtz free energy ΔF, internal energy ΔE, entropy S, and constant-volume specific heat Cv of PuC and PuC0.75 are given. The results are in good agreement with available experimental or theoretical data. As for the chemical bonding nature, the difference charge densities, the partial densities of states and the Bader charge analysis suggest that the Pu-C bonds of PuC and PuC0.75 have a mixture of covalent character and ionic character. The effect of carbon vacancy on the chemical bonding is also discussed in detail. We expect that our study can provide some useful reference for further experimental research on the phonon density of states, thermodynamic properties of the plutonium monocarbide.

Keywords:  hybrid functional      DFT+U      plutonium monocarbide  
Received:  01 February 2016      Revised:  04 March 2016      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  74.25.Bt (Thermodynamic properties)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160 and 21401173).

Corresponding Authors:  Tao Gao, Bing-Yun Ao     E-mail:  gaotao@scu.edu.cn;aobingyun@caep.cn

Cite this article: 

Rong Yang(杨荣), Bin Tang(唐斌), Tao Gao(高涛), Bing-Yun Ao(敖冰云) Hybrid density functional study on lattice vibration, thermodynamic properties, and chemical bonding of plutonium monocarbide 2016 Chin. Phys. B 25 067106

[1] Zachariasen W H 1949 The Crystal Structure of Plutonium Nitride and Plutonium Carbide, The Transuranium Elements, National Nuclear Energy Series. IV-14B (New York: McGraw-Hill Book Co., Inc.) p. 1448
[2] Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929
[3] Solovyev I V, Dederichs P H and Anisimov V I 1994 Phys. Rev. B 50 16861
[4] Shim J H, Haule K and Kotliar G 2007 Nature 446 513
[5] Becke A D 1993 J. Chem. Phys. 98 1372
[6] Becke A D 1993 J. Chem. Phys. 98 5648
[7] Wang B T and Zhang P 2011 Chin. Phys. Lett. 28 047101
[8] Guo Y, Ai J J, Gao T and Ao B Y 2013 Chin. Phys. B 22 057103
[9] Wen X D, Martin R L, Scueria G E, Rudin S P and Batista E R 2013 J. Phys. Chem. C 117 13122
[10] Green J L, Arnold G P, Leary J A and Nereson N G 1967 J. Nucl. Mater. 23 231
[11] Gouder T, Havela L, Shick A B, Huber F, Wastin F and Rebizant J 2007 J. Phys.: Condens. Matter 19 476201
[12] Kruger O L and Savage H 1964 J. Chem. Phys. 40 3324
[13] Havela L, Shick A and Gouder T 2009 J. Appl. Phys. 105 07E130
[14] Petit L, Savane A, Szotek Z, Temmerman W M and Stoks G M 2009 Phys. Rev. B 80 045124
[15] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2011 WIEN2k-an Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Austria: Karlheinz Schwarz Technische Universität Wien)
[16] Singh D J 1994 Planewaves, Pseudopotentials and the LAPW Method (Boston: Kluwer Academic)
[17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
[19] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 5467
[20] Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029
[21] Adamo C and Barone V 1999 J. Chem. Phys. 110 6158
[22] Moreira I de P R, Illas F and Martin R L 2002 Phys. Rev. B 65 155102
[23] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[24] Benedict U, Dufour C and Scholten O 1978 J. Nucl. Mater. 73 208
[25] Mulford R N R, Ellinger F H, Hendrix G S and Albrecht E D 1961 The Plutonium-Carbon System, Plutonium 1960 (London: Cleaver-Hume Press Ltd.) p. 301
[26] Rosen S, Nevitt M V and Mitchell A W 1963 J. Nucl. Mater. 10 90
[27] Kruger O L 1963 J. Am. Ceram. Soc. 46 80
[28] Pascard R 1961 E'tudes preliminaires sur le systeme plutonium-carbone et les solutions solides carbure d'uranium-carbure de plutonium, in Powder Metallurgy In the Nuclear Age. Plansee Proceedings (Metallwerk Plansee AC, Reutte/Tyrol (1C62)) p. 387
[29] Burnham J B, Skavdahl R E and Chikalla T D 1964 Plutonium Bearing Refractory Carbides, Carbides in Nuclear Energy, Vol. 1. (London: Macmillan and Co. Ltd.) p. 51
[30] Alfé D 2009 Comput. Phys. Commun. 180 2622
[31] Lee C and Gonze X 1995 Phys. Rev. B 51 8610
[32] Petit A T and Dulong P L 1819 Annales. de. chimie. et. de. physique. (in French) 10 395
[33] Limpijumnong S and Jungthawan S 2004 Phys. Rev. B 70 054104
[34] Mulford R N R, Ellinger F H, Hendrix G S and Albrecht E D 1961 in Plutonium 1960 (London: Cleaver-Hume Press Ltd.) p. 301
[35] Wang R, Wang S F, Wu X Z and Song T T 2012 Int. J. Thermophys. 33 300
[36] Maier C G and Kelley K K 1932 J. Am. Chern. Soc. 54 3243
[37] Rand M H and Street R S 1964 Anomalous Thermal Expansions in the Plutonium Monocarbide Region, Carbides in Nuclear Energy, Vol. 1. (London: Macmillan and Co. Ltd.) p. 108
[38] Rand M H and Street R S 1962 High Temperature X-ray Diffraction Studies, Part 3, Plutonium Nitride and Plutonium Sesquicarbide (AERE-M-73)
[39] Leary J A, Thomas R L, Ogard A E and Worm G C 1964 Thermal Conductivity and Electrical Resistivity of UC, (m U, Pu)C, and PuC. Carbides in Nuclear Energy, Vol. 1. (London: Macmillan and Co. Ltd.) p. 365
[40] Moser J B and Kruger O L Thermal Diffusivity of Aetinide Compounds, Thermal Conductivity, Proceedings of Seventh Conference, p. 302
[41] Hector L G, Herbst J F and Capehart T W 2003 J. Alloys Compd. 353 74
[42] Bader R F W 1990 Atoms in molecules: a uantum theory (New York: Oxford University Press)
[1] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[2] CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
Zhaokun Dong(董昭昆), Zhen Wang(王振), Te Zhang(张特), Junsen Xiang(项俊森), Shuai Zhang(张帅), Lihua Liu(刘丽华), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117502.
[3] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[4] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[5] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[6] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[7] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[8] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[9] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[10] Magnetic impurity in hybrid and type-II nodal line semimetals
Xiao-Rong Yang(杨晓容), Zhen-Zhen Huang(黄真真), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2021, 30(6): 067103.
[11] Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(4): 047106.
[12] Intercalation of van der Waals layered materials: A route towards engineering of electron correlation
Jingjing Niu(牛晶晶), Wenjie Zhang(章文杰), Zhilin Li(李治林), Sixian Yang(杨嗣贤), Dayu Yan(闫大禹), Shulin Chen(陈树林), Zhepeng Zhang(张哲朋), Yanfeng Zhang(张艳锋), Xinguo Ren(任新国), Peng Gao(高鹏), Youguo Shi(石友国), Dapeng Yu(俞大鹏), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(9): 097104.
[13] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
[14] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[15] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
No Suggested Reading articles found!