Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 066802    DOI: 10.1088/1674-1056/25/6/066802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of grinding-induced grain boundary and interfaces on electrical transportation and structure phase transition in ZnSe under high pressure

Jie Yang(杨洁)1,2, Pei Wang(汪沛)1,2, Guo-Zhao Zhang(张国召)2, Xiao-Xue Zhou(周晓雪)2, Jing Li(李静)3, Cai-Long Liu(刘才龙)2
1 Fundamental Department, Aviation University of Airforce, Changchun 130022, China;
2 State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
3 School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
Abstract  

Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure. We conduct an experiment under high pressure in situ alternating current impedance to elucidate the effects of interface on the structure and electrical transport behavior of two ZnSe samples with different sizes obtained by physical grinding. The results show that (i) two different-sized ZnSe samples undergo the same phase transitions from zinc blend to cinnabar-type phase and then to rock salt phase; (ii) the structural transition pressure of the 859-nm ZnSe sample is higher than that of the sample of 478 nm, which indicates the strong scale effect. The pressure induced boundary resistance change is obtained by fitting the impedance spectrum, which shows that the boundary conduction dominates the electrical transport behavior of ZnSe in the whole experimental pressure range. By comparing the impedance spectra of two different-sized ZnSe samples at high pressure, we find that the resistance of the 478-nm ZnSe sample is lower than that of the 859-nm sample, which illustrates that the sample with smaller particle size has more defects which are due to physical grinding.

Keywords:  interface effect      impedance      phase transition      high pressure  
Received:  17 January 2016      Revised:  24 February 2016      Accepted manuscript online: 
PACS:  68.35.bg (Semiconductors)  
  73.25.+i (Surface conductivity and carrier phenomena)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11404133 and 11374121) and the Program of Science and Technology Development Plan of Jilin Province, China (Grant No. 20140520105JH).

Corresponding Authors:  Jing Li, Cai-Long Liu     E-mail:  lj5286@126.com;cailong_liu@jlu.edu.cn

Cite this article: 

Jie Yang(杨洁), Pei Wang(汪沛), Guo-Zhao Zhang(张国召), Xiao-Xue Zhou(周晓雪), Jing Li(李静), Cai-Long Liu(刘才龙) Effects of grinding-induced grain boundary and interfaces on electrical transportation and structure phase transition in ZnSe under high pressure 2016 Chin. Phys. B 25 066802

[1] Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A and Alivisatos A P 2000 Nature 404 59
[2] Sui Y M, Fu W Y, Yang H B, Zeng Y, Zhang Y Y, Zhao Q, Li Y E, Zhou X M, Leng Y, Li M H and Zou G T 2010 Cryst. Growth Des. 10 99
[3] Wang Y G, Yang L L, Wang Y J, Wang X F and Han G R 2015 J. Alloys Compd. 654 246
[4] Moreels I, Lambert K, Smeets D, De Muynck D, Nollet T, Martins J C, Vanhaecke F, Vantomme A, Delerue C, Allan G and Hens Z 2009 ACS Nano 3 3023
[5] Wang Z W, Daemen L L, Zhao Y S, Zha C S, Downs R T, Wang X D, Wang Z L and Hemley R J 2005 Nat. Mater. 4 922
[6] Guo Q X, Zhao Y S, Mao W L, Wang Z W, Xiong Y J and Xia Y N 2008 Nano Lett. 8 972
[7] Jiang J, Gerward L, Frost D, Secco R, Peyronneau J and Olsen J S 1999 J. Appl. Phys. 86 6608
[8] Bayarjargal L, Wiehl L and Winkler B 2013 High Pressure Res. 33 642
[9] Wang L, Yang W G, Ding Y, Ren Y, Xiao S G, Liu B B, Sinogeikin S V, Meng Y, Gosztola D J, Shen G Y, Hemley R J, Mao W L and Mao H K 2010 Phys. Rev. Lett. 105 095701
[10] Wu H, Bai F, Sun Z, Haddad R E, Boye D M, Wang Z and Fan H 2010 Angew. Chem. Int. Ed. 49 8431
[11] Wu H, Bai F, Sun Z, Haddad R E, Boye D M, Wang Z, Huang J Y and Fan H 2010 J. Am. Chem. Soc. 132 12826
[12] Li B, Wen X, Li R, Wang Z, Clem P G and Fan H 2014 Nat. Commun. 5 4179
[13] Liu C L, Sui Y M, Ren W B, Ma B H, Li Y, Su N N, Wang Q L, Li Y Q, Zhang J K, Han Y H, Ma Y Z and Gao C X 2012 Inorg. Chem. 51 7001
[14] Ke F, Wang Q L, Zhang J K, Guo Y, Tan D Y, Li Y, Liu C L, Han Y H, Ma Y Z, Chen X J, Chen B and Gao C X 2015 Rsc. Adv. 5 41359
[15] Zhang H W, Ke F, Li Y, Wang L, Liu C L, Zeng Y, Yao M G, Han Y H, Ma Y M and Gao C X 2015 Sci. Rep. 5 14417
[16] Liu J D, Cheng B, Zhang J, Zhang L J, Weng H M and Ye B J 2011 Chin. Phys. B 20 108105
[17] Pashley M 1989 Phys. Rev. B 40 10481
[18] Chen H S, Wang S J J, Lo C J and Chi J Y 2005 Appl. Phys. Lett. 86 131905
[19] Vukovic N, Healy N, Sparks J, Badding J, Horak P and Peacock A 2015 Sci. Rep. 5 11798
[20] Muhammad Z, Shabbir A, Shakil M, Choudhary M and Mahmood K 2015 Chin. Phys. B 24 076106
[21] Mazher J, Badwe S, Sengar R, Gupta D and Pandey R 2003 Physica E 16 209
[22] Verma M, Patidar D, Sharma K and Saxena N 2015 J. Nanoelectron. Opt. 10 320
[23] Samara G and Drickamer H 1962 J. Phys. Chem. Solids 23 457
[24] Smelyansky V V and Tse J S 1995 Phys. Rev. B: Condens. Matter 52 4658
[25] Côté M, Zakharov O, Rubio A and Cohen M L 1997 Phys. Rev. B 55 13025
[26] Varshney D, Kaurav N, Sharma P, Shah S and Singh R 2004 Phase Transitions 77 1075
[27] Hu T J, Cui X Y, Li X F, Wang J S, Yang J H and Gao C X 2015 High Pressure Res. 35 117
[28] Campos C, De Lima J, Grandi T, Itié J, Polian A and Michalowicz A 2005 J. Phys.: Condens. Matter 17 5187
[29] Wang Y, Han Y H, Gao C X, Ma Y Z, Liu C L, Peng G, Wu B J, Liu B, Hu T J and Cui X Y 2010 Rev. Sci. Instrum. 81 013904
[30] Peng G, Wang Q L, Liu C L, Han Y H and Gao C X 2013 Chem. Phys. Lett. 582 163
[31] Wang Q L, Han Y H, Liu C L, Ma Y Z, Ren W B and Gao C X 2012 Appl. Phys. Lett. 100 172905
[32] Mao H K, Xu J and Bell P 1986 J. Geophys. Res. 91 4673
[33] Shchennikov V V and Ovsyannikov S V 2007 Phys. Status Solidi B 244 437
[34] Errandonea D, Segura A, Martínez-García D and Muñoz-San Jose V 2009 Phys. Rev. B 79 125203
[35] Durandurdu M 2009 J. Phys.: Condens. Matter 21 125403
[36] Ves S, Strössner K, Christensen N, Kim C K and Cardona M 1985 Solid State Commun. 56 479
[37] Tuller H L 2000 Solid State Ionics 131 143
[38] Itkin G, Hearne G R, Sterer E, Pasternak M P and Potzel W 1995 Phys. Rev. B 51 3195
[39] Karzel H, Potzel W, Köfferlein M, Schiessl W, Steiner M, Hiller U, Kalvius G, Mitchell D, Das T and Blaha P 1996 Phys. Rev. B 53 11425
[40] Smelyansky V I and John S T 1995 Phys. Rev. B 52 4658
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[12] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[13] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[14] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[15] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
No Suggested Reading articles found!