CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of grinding-induced grain boundary and interfaces on electrical transportation and structure phase transition in ZnSe under high pressure |
Jie Yang(杨洁)1,2, Pei Wang(汪沛)1,2, Guo-Zhao Zhang(张国召)2, Xiao-Xue Zhou(周晓雪)2, Jing Li(李静)3, Cai-Long Liu(刘才龙)2 |
1 Fundamental Department, Aviation University of Airforce, Changchun 130022, China;
2 State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
3 School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China |
|
|
Abstract Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure. We conduct an experiment under high pressure in situ alternating current impedance to elucidate the effects of interface on the structure and electrical transport behavior of two ZnSe samples with different sizes obtained by physical grinding. The results show that (i) two different-sized ZnSe samples undergo the same phase transitions from zinc blend to cinnabar-type phase and then to rock salt phase; (ii) the structural transition pressure of the 859-nm ZnSe sample is higher than that of the sample of 478 nm, which indicates the strong scale effect. The pressure induced boundary resistance change is obtained by fitting the impedance spectrum, which shows that the boundary conduction dominates the electrical transport behavior of ZnSe in the whole experimental pressure range. By comparing the impedance spectra of two different-sized ZnSe samples at high pressure, we find that the resistance of the 478-nm ZnSe sample is lower than that of the 859-nm sample, which illustrates that the sample with smaller particle size has more defects which are due to physical grinding.
|
Received: 17 January 2016
Revised: 24 February 2016
Accepted manuscript online:
|
PACS:
|
68.35.bg
|
(Semiconductors)
|
|
73.25.+i
|
(Surface conductivity and carrier phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404133 and 11374121) and the Program of Science and Technology Development Plan of Jilin Province, China (Grant No. 20140520105JH). |
Corresponding Authors:
Jing Li, Cai-Long Liu
E-mail: lj5286@126.com;cailong_liu@jlu.edu.cn
|
Cite this article:
Jie Yang(杨洁), Pei Wang(汪沛), Guo-Zhao Zhang(张国召), Xiao-Xue Zhou(周晓雪), Jing Li(李静), Cai-Long Liu(刘才龙) Effects of grinding-induced grain boundary and interfaces on electrical transportation and structure phase transition in ZnSe under high pressure 2016 Chin. Phys. B 25 066802
|
[1] |
Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A and Alivisatos A P 2000 Nature 404 59
|
[2] |
Sui Y M, Fu W Y, Yang H B, Zeng Y, Zhang Y Y, Zhao Q, Li Y E, Zhou X M, Leng Y, Li M H and Zou G T 2010 Cryst. Growth Des. 10 99
|
[3] |
Wang Y G, Yang L L, Wang Y J, Wang X F and Han G R 2015 J. Alloys Compd. 654 246
|
[4] |
Moreels I, Lambert K, Smeets D, De Muynck D, Nollet T, Martins J C, Vanhaecke F, Vantomme A, Delerue C, Allan G and Hens Z 2009 ACS Nano 3 3023
|
[5] |
Wang Z W, Daemen L L, Zhao Y S, Zha C S, Downs R T, Wang X D, Wang Z L and Hemley R J 2005 Nat. Mater. 4 922
|
[6] |
Guo Q X, Zhao Y S, Mao W L, Wang Z W, Xiong Y J and Xia Y N 2008 Nano Lett. 8 972
|
[7] |
Jiang J, Gerward L, Frost D, Secco R, Peyronneau J and Olsen J S 1999 J. Appl. Phys. 86 6608
|
[8] |
Bayarjargal L, Wiehl L and Winkler B 2013 High Pressure Res. 33 642
|
[9] |
Wang L, Yang W G, Ding Y, Ren Y, Xiao S G, Liu B B, Sinogeikin S V, Meng Y, Gosztola D J, Shen G Y, Hemley R J, Mao W L and Mao H K 2010 Phys. Rev. Lett. 105 095701
|
[10] |
Wu H, Bai F, Sun Z, Haddad R E, Boye D M, Wang Z and Fan H 2010 Angew. Chem. Int. Ed. 49 8431
|
[11] |
Wu H, Bai F, Sun Z, Haddad R E, Boye D M, Wang Z, Huang J Y and Fan H 2010 J. Am. Chem. Soc. 132 12826
|
[12] |
Li B, Wen X, Li R, Wang Z, Clem P G and Fan H 2014 Nat. Commun. 5 4179
|
[13] |
Liu C L, Sui Y M, Ren W B, Ma B H, Li Y, Su N N, Wang Q L, Li Y Q, Zhang J K, Han Y H, Ma Y Z and Gao C X 2012 Inorg. Chem. 51 7001
|
[14] |
Ke F, Wang Q L, Zhang J K, Guo Y, Tan D Y, Li Y, Liu C L, Han Y H, Ma Y Z, Chen X J, Chen B and Gao C X 2015 Rsc. Adv. 5 41359
|
[15] |
Zhang H W, Ke F, Li Y, Wang L, Liu C L, Zeng Y, Yao M G, Han Y H, Ma Y M and Gao C X 2015 Sci. Rep. 5 14417
|
[16] |
Liu J D, Cheng B, Zhang J, Zhang L J, Weng H M and Ye B J 2011 Chin. Phys. B 20 108105
|
[17] |
Pashley M 1989 Phys. Rev. B 40 10481
|
[18] |
Chen H S, Wang S J J, Lo C J and Chi J Y 2005 Appl. Phys. Lett. 86 131905
|
[19] |
Vukovic N, Healy N, Sparks J, Badding J, Horak P and Peacock A 2015 Sci. Rep. 5 11798
|
[20] |
Muhammad Z, Shabbir A, Shakil M, Choudhary M and Mahmood K 2015 Chin. Phys. B 24 076106
|
[21] |
Mazher J, Badwe S, Sengar R, Gupta D and Pandey R 2003 Physica E 16 209
|
[22] |
Verma M, Patidar D, Sharma K and Saxena N 2015 J. Nanoelectron. Opt. 10 320
|
[23] |
Samara G and Drickamer H 1962 J. Phys. Chem. Solids 23 457
|
[24] |
Smelyansky V V and Tse J S 1995 Phys. Rev. B: Condens. Matter 52 4658
|
[25] |
Côté M, Zakharov O, Rubio A and Cohen M L 1997 Phys. Rev. B 55 13025
|
[26] |
Varshney D, Kaurav N, Sharma P, Shah S and Singh R 2004 Phase Transitions 77 1075
|
[27] |
Hu T J, Cui X Y, Li X F, Wang J S, Yang J H and Gao C X 2015 High Pressure Res. 35 117
|
[28] |
Campos C, De Lima J, Grandi T, Itié J, Polian A and Michalowicz A 2005 J. Phys.: Condens. Matter 17 5187
|
[29] |
Wang Y, Han Y H, Gao C X, Ma Y Z, Liu C L, Peng G, Wu B J, Liu B, Hu T J and Cui X Y 2010 Rev. Sci. Instrum. 81 013904
|
[30] |
Peng G, Wang Q L, Liu C L, Han Y H and Gao C X 2013 Chem. Phys. Lett. 582 163
|
[31] |
Wang Q L, Han Y H, Liu C L, Ma Y Z, Ren W B and Gao C X 2012 Appl. Phys. Lett. 100 172905
|
[32] |
Mao H K, Xu J and Bell P 1986 J. Geophys. Res. 91 4673
|
[33] |
Shchennikov V V and Ovsyannikov S V 2007 Phys. Status Solidi B 244 437
|
[34] |
Errandonea D, Segura A, Martínez-García D and Muñoz-San Jose V 2009 Phys. Rev. B 79 125203
|
[35] |
Durandurdu M 2009 J. Phys.: Condens. Matter 21 125403
|
[36] |
Ves S, Strössner K, Christensen N, Kim C K and Cardona M 1985 Solid State Commun. 56 479
|
[37] |
Tuller H L 2000 Solid State Ionics 131 143
|
[38] |
Itkin G, Hearne G R, Sterer E, Pasternak M P and Potzel W 1995 Phys. Rev. B 51 3195
|
[39] |
Karzel H, Potzel W, Köfferlein M, Schiessl W, Steiner M, Hiller U, Kalvius G, Mitchell D, Das T and Blaha P 1996 Phys. Rev. B 53 11425
|
[40] |
Smelyansky V I and John S T 1995 Phys. Rev. B 52 4658
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|