CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot |
Ahmed S Jbara1,2,3, Zulkafli Othaman1,3, M A Saeed3 |
1. Center for Sustainable Nanomaterials, Universiti Teknologi Malaysia, Skudai-81310, Johor Bahru, Malaysia; 2. Physics Department, Science College, Al-Muthanna University, Samawah, Iraq; 3. Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai-81310, Johor Bahru, Malaysia |
|
|
Abstract Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients.
|
Received: 11 October 2015
Revised: 13 January 2016
Accepted manuscript online:
|
PACS:
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
78.67.Hc
|
(Quantum dots)
|
|
02.70.Dh
|
(Finite-element and Galerkin methods)
|
|
Fund: Project supported by the Ministry of Higher Education and Scientific Research in Iraq, Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia (UTM RUG Vote No. 06-H14). |
Corresponding Authors:
Zulkafli Othaman
E-mail: zulothaman@gmail.com
|
Cite this article:
Ahmed S Jbara, Zulkafli Othaman, M A Saeed Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot 2016 Chin. Phys. B 25 057801
|
[1] |
Yang W X, Chen A X, Huang Z and Lee R K 2015 Opt. Express 23 13032
|
[2] |
Buhbut S, Itzhakov S, Tauber E, Shalom M, Hod I, Geiger T, Garini Y, Oron D and Zaban A 2010 ACS Nano 4 1293
|
[3] |
Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and van Hulst N F 2010 Science 329 930
|
[4] |
Mikhail I F I and Ismail I M M 2007 Phys. Status Solidi (b) 244 3647
|
[5] |
Sadeghi E 2009 Physica E 41 1319
|
[6] |
Maksym P and Chakraborty T 1990 Phys. Rev. Lett. 65 108
|
[7] |
Yusuf Y, Bekir Ç and Ayhan Ö 2010 Commun. Theor. Phys. 53 1185
|
[8] |
Montgomery Jr H E and Pupyshev V I 2013 Phys. Lett. A 377 2880
|
[9] |
Vatansever Z, Sakiroglu S and Sokmen İ 2015 Chin. Phys. B 24 127303
|
[10] |
Datta N K, Ghosh S and Ghosh M 2012 Superlatt. Microst. 51 163
|
[11] |
Pal S, Sinha S S, Ganguly J and Ghosh M 2013 Chem. Phys. 426 54
|
[12] |
Eerdunchaolu B X F and Chao H 2014 Acta Phys. Sin. 63 027501 (in Chinese)
|
[13] |
Zang X and Lusk M T 2015 Phys. Rev. B 92 035426
|
[14] |
Al-Douri Y, Hashim U, Khenata R, Reshak A H, Ameri M, Bouhemadou A, Rahim R A and Md A M K 2015 Sol. Energy 115 33
|
[15] |
Yakar Y, Çakir B and Özmen A 2013 Superlatt. Microst. 60 389
|
[16] |
Stojanović D and Kostić R 2013 Phys. Scripta T157 014044
|
[17] |
Boichuk V I, Bilynskyi I V, Leshko R Y and Turyanska L M 2011 Physica E 44 476
|
[18] |
Eliav E, Yakobi H and Kaldor U 2014 Comp. Theor. Chem. 1040-1041 61
|
[19] |
Solaimani M 2015 Chin. Phys. Lett. 32 117304
|
[20] |
Jungho K and Chuang S L 2006 IEEE J. Quant. Electron. 42 942
|
[21] |
Zhang L, Shi J J and Xie H J 2006 Solid State Commun. 140 549
|
[22] |
Nenad V, Zoran I, Dragan I and Paul H 2006 J. Phys.: Condens. Matter. 18 6249
|
[23] |
Melnik R V N and Willatzen M 2004 Nanotechnology 15 1
|
[24] |
Parvizi R 2015 Physica B 456 87
|
[25] |
Saïdi I, Sellami K, Yahyaoui M, Testelin C and Boujdaria K 2011 J. Appl. Phys. 109 033703
|
[26] |
Lee J, Chou W C, Yang C S and Jan G J 2004 Chin. J. Phys. 42 102
|
[27] |
Bouzaïene L, Ben M R, Baira M, Sfaxi L and Maaref H 2013 J. Luminum. 135 271
|
[28] |
Khaledi-Nasab A, Sabaeian M, Sahrai M, Fallahi V and Mohammad-Rezaee M 2014 Physica E 60 42
|
[29] |
Maia A B, da Silva E C F, Quivy A A, Bindilatti V, de Aquino V M and Dias I L 2013 J. Appl. Phys. 114 083708
|
[30] |
Jain S C, Willander M, Narayan J and Overstraeten R V 2000 J. Appl. Phys. 87 965
|
[31] |
Manasreh M O 2000 III-Nitride Semiconductors: Electrical, Structural and Defects Properties (Amsterdam: Elsevier) pp. 1-15
|
[32] |
Al-Khursan A H, Subhi A and Abood H I 2013 Optik 124 4072
|
[33] |
Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J, Saito Y and Nanishi Y 2002 Appl. Phys. Lett. 80 3967
|
[34] |
Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev V V, Ivanov S V, Bechstedt F, Furthmüller J, Harima H, Mudryi A V, Aderhold J, Semchinova O and Graul J 2002 Phys. Status Solidi (b) 229 R1
|
[35] |
Jbara A S, Abood H I and Al-Khursan A H 2012 J. Opt. 41 214
|
[36] |
Ren Z, Chao L, Chen X, Zhao B, Wang X, Tong J, Zhang J, Zhuo X, Li D, Yi H and Li S 2013 Opt. Express 21 7118
|
[37] |
Yang J, Zhao D G, Jiang D S, Liu Z S, Chen P, Li L, Wu L L, Le L C, Li X J, He X G, Wang H, Zhu J J, Zhang S M, Zhang B S and Yang H 2014 Chin. Phys. B 23 068801
|
[38] |
Çakmak H, Arslan E, Rudziński M, Demirel P, Unalan H E, Strupiński W, Turan R, Öztuŕk M and Özbay E 2014 J. Mater. Sci.: Mater. El. 25 3652
|
[39] |
Víctor J G, Paul E D S R, Praveen K, Enrique C and Richard N 2013 Jpn. J. Appl. Phys. 52 08JH09
|
[40] |
Wang L, Yang D, Hao Z B and Luo Y 2015 Chin. Phys. B 24 067303
|
[41] |
Deng Q, Wang X, Xiao H, Wang C, Yin H, Chen H, Lin D, Li J, Wang Z and Hou X 2011 J. Phys. D: Appl. Phys. 44 265103
|
[42] |
Gačvić Ž, Das A, Teubert J, Kotsar Y, Kandaswamy P K, Kehagias T, Koukoula T, Komninou P and Monroy E 2011 J. Appl. Phys. 109 103501
|
[43] |
Widmann F, Simon J, Daudin B, Feuillet G, Rouviére J L, Pelekanos N T and Fishman G 1998 Phys. Rev. B 58 R15989
|
[44] |
Takagahara T 1987 Phys. Rev. B 36 9293
|
[45] |
Ahn D and Chuang S L 1987 IEEE J. Quant. Electron. 23 2196
|
[46] |
Dalmasso S, Damilano B, Grandjean N, Massies J, Leroux M, Reverchon J L and Duboz J Y 2000 Thin Solid Films 380 195
|
[47] |
Wang Q, Wang T, Parbrook P J, Bai J and Cullis A G 2008 Microscopy of Semiconducting Materials 2007 (Netherlands: Springer) pp. 21-24
|
[48] |
Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
|
[49] |
Vurgaftman I and Meyer J R 2007 Nitride Semiconductor Devices: Principles and Simulation (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp. 13-48
|
[50] |
Xia C S, Hu W D, Wang C, Li Z F, Chen X S, Lu W, Li Z M S and Li Z Q 2006 Opt. Quant. Electron. 38 1077
|
[51] |
Reid B P L, Zhu T, Puchtler T J, Fletcher L J, Chan C C S, Oliver R A and Taylor R A 2013 Jpn. J. Appl. Phys. 52 08JE01
|
[52] |
Frost T, Banerjee A, Kai S, Shun Lien C and Bhattacharya P 2013 IEEE J. Quant. Electron. 49 923
|
[53] |
Katz E, Mescheloff A, Visoly-Fisher I and Galagan Y 2016 Sol. Energ. Mat. Sol. C 144 273
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|