Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054209    DOI: 10.1088/1674-1056/ab8206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation

Chao Tan(谭超)1, Lin-Jie Zhao(赵林杰)1, Ming-Jun Chen(陈明君)1, Jian Cheng(程健)1, Zhao-Yang Yin(尹朝阳)1, Qi Liu(刘启)1, Hao Yang(杨浩)1, Wei Liao(廖威)2
1 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China;
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  CO2 laser rapid ablation mitigation (RAM) of fused silica has been used in high-power laser systems owing to its advantages of high efficiency, and ease of implementing batch and automated repairing. In order to study the effect of repaired morphology of RAM on laser modulation and to improve laser damage threshold of optics, an finite element method (FEM) mathematical model of 351 nm laser irradiating fused silica optics is developed based on Maxwell electromagnetic field equations, to explore the 3D near-field light intensity distribution inside optics with repaired site on its surface. The influences of the cone angle and the size of the repaired site on incident laser modulation are studied as well. The results have shown that for the repaired site with a cone angle of 73.3°, the light intensity distribution has obvious three-dimensional characteristics. The relative light intensity on z-section has a circularly distribution, and the radius of the annular intensification zone increases with the decrease of z. While the distribution of maximum relative light intensity on y-section is parabolical with the increase of y. As the cone angle of the repaired site decreases, the effect of the repaired surface on light modulation becomes stronger, leading to a weak resistance to laser damage. Moreover, the large size repaired site would also reduce the laser damage threshold. Therefore, a repaired site with a larger cone angle and smaller size is preferred in practical CO2 laser repairing of surface damage. This work will provide theoretical guidance for the design of repaired surface topography, as well as the improvement of RAM process.
Keywords:  fused silica      laser repaired surface      optical modulation      finite element method (FEM)  
Received:  09 January 2020      Revised:  22 February 2020      Accepted manuscript online: 
PACS:  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.70.Ce (Glasses, quartz)  
  46.15.-x (Computational methods in continuum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51775147 and 51705105), the Science Challenge Project of China (Grant No. TZ2016006-0503-01), the Young Elite Scientists Sponsorship Program by CAST (Grant No. 2018QNRC001), the China Postdoctoral Science Foundation funded project (Grant Nos. 2018T110288 and 2017M621260), the Self-Planned Task of State Key Laboratory of Robotics and System (HIT) (Grant Nos. SKLRS201718A and SKLRS201803B).
Corresponding Authors:  Ming-Jun Chen, Jian Cheng     E-mail:  chenmj@hit.edu.cn;cheng.826@hit.edu.cn

Cite this article: 

Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威) Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation 2020 Chin. Phys. B 29 054209

[1] Negres R A, Abdulla G M, Cross D A, Liao Z M and Carr C W 2012 Opt. Express 20 13030
[2] Negres R A, Norton M A, Cross D A and Carr C W 2010 Opt. Express 18 19966
[3] Spaeth M, Wegner P, Suratwala T et al. 2016 Fusion. Sci. Technol. 69 265
[4] Mendez E, Nowak K, Baker H, Villarreal F and Hall D 2006 Appl. Opt. 45 5358
[5] Yang S T, Matthews M J, Elhadj S, Cooke D, Guss G M, Draggoo V G and Wegner P J 2010 Appl. Opt. 49 2606
[6] Cormont P, Bourgeade A, Cavaro S, Donval T, Doualle T, Gaborit G, Gallais L, Lamaignere L and Rullier J L 2015 Adv. Eng. Mater 17 253
[7] Cormont P, Combis P, Gallais L, Hecquet C, Lamaignére L and Rullier J L 2013 Opt. Express 21 28272
[8] Palmier S, Gallais L, CommandréM, Cormont P, Courchinoux R, Lamaignére L, Rullier J L and Legros P 2009 Appl. Surf. Sci. 255 5532
[9] Matthews M J, Yang S T, Shen N, Elhadj S, Raman R N, Guss G, Bass I L, Nostrand M C and Wegner P J 2015 Adv. Eng. Mater 17 247
[10] Dai W, Xiang X, Jiang Y, Wang H J, Li X B, Yuan X D, Zheng W G, Lv H B and Zu X T 2011 Opt. Lasers Eng. 49 273
[11] Gallais L, Cormont P and Rullier J L 2009 Opt. Express 17 23488
[12] Gao X, Jiang Y, Qiu R, Zhou Q, Zuo R, Zhou G R and Yao K 2017 Opt. Mater 64 295
[13] Li L, Xiang X, Zu X T, Yuan X D, He S B, Jiang X D and Zhao W G 2012 Chin. Phys. B 21 044212
[14] Bass I L, Guss G M, Nostrand M J and Wegner P J 2010 Proc. SPIE 7842 784220
[15] Doualle T, Gallais L, Monneret S, Bouillet S, Bourgeade A, Ameil C, Lamaignére L and Cormont P 2016 Opt. Eng. 56 011022
[16] Zhang C C, Zhang L J, Jiang X D, Jia B S, Liao W, Dai R C, Chen J, Yuan X D and Jiang X D 2020 Opt. Lasers Eng. 125 105857
[17] Folta J, Nostrand M, Honig J et al 2013 Proc. SPIE 8885 88850Z-2
[18] Doualle T, Gallais L, Monneret S, Bouillet S, Bourgeade A, Ameil C, Lamaignére L and Cormont P 2016 Proc. SPIE 10014 1001407
[19] Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Su J Q, Zheng K X, Yuan X D, Zhou H and Dai W J 2016 High. Power. Laser. Sci. 4 e21
[20] Matthews M J, Bass I L, Guss G M, Widmayer C C and Ravizza F L 2008 Proc. SPIE 6720 67200A
[21] Adams J, Bolourchi M, Bude J, Guss G M, Matthews M and Nostrand M 2010 Proc. SPIE 7842 784223
[22] Zhang C L, Yao C M and Wang C D 2016 Optik 127 3750
[23] Zhang C L, Yao C M and Wang C D 2016 Optik 127 3105
[24] Fang Z, Zhao Y A, Chen S, Sun W and Shao J 2013 Appl. Opt. 52 7186
[25] Li B, Zhou Q Y, Jiang Y, Xiang X, Liao W, Jiang X L, Wang H J, Luan X Y, Zheng W G and Yuan X D 2017 Opt. Eng. 56 016113
[26] Yang L, Xiang X, Miao X X, Li L, Yuan X D, Yan Z H, Zhou G R, Lv H B, Zheng W G and Zu X T 2016 Chin. Phys. B 25 014210
[27] Xie Y X, Qi L, Liu Y L and Zhang R Z 2019 Optik 184 220
[1] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[2] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[3] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[4] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[5] Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate
Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新). Chin. Phys. B, 2020, 29(2): 027901.
[6] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[7] Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica
Dongwei Li(李东伟), Lanzhi Zhang(张兰芝), Saba Zafar, He Song(宋鹤), Zuoqiang Hao(郝作强), Tingting Xi(奚婷婷), Xun Gao(高勋), Jingquan Lin(林景全). Chin. Phys. B, 2017, 26(7): 074213.
[8] Improvement of laser damage thresholds of fused silica by ultrasonic-assisted hydrofluoric acid etching
Yuan Li(李源), Hongwei Yan(严鸿维), Ke Yang(杨科), Caizhen Yao(姚彩珍), Zhiqiang Wang(王志强), Chunyan Yan(闫春燕), Xinshu Zou(邹鑫书), Xiaodong Yuan(袁晓东), Liming Yang(杨李茗), Xin Ju(巨新). Chin. Phys. B, 2017, 26(11): 118104.
[9] Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials
Lan-Ying Zhang(张兰英), Yan-Zi Gao(高延子), Ping Song(宋平), Xiao-Juan Wu(武晓娟), Xiao Yuan(苑晓), Bao-Feng He(何宝凤), Xing-Wu Chen(陈兴武), Wang Hu(胡望), Ren-Wei Guo(郭仁炜), Hang-Jun Ding(丁杭军), Jiu-Mei Xiao(肖久梅), Huai Yang(杨槐). Chin. Phys. B, 2016, 25(9): 096101.
[10] Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics
Xiang He(何祥), Heng Zhao(赵恒), Gang Wang(王刚), Peifan Zhou(周佩璠), Ping Ma(马平). Chin. Phys. B, 2016, 25(8): 088105.
[11] Stable structure and optical properties of fused silica with NBOHC-E' defect
Peng-Fei Lu(芦鹏飞), Li-Yuan Wu(伍力源), Yang Yang(杨阳), Wei-Zheng Wang(王唯正), Chun-Fang Zhang(张春芳), Chuang-Hua Yang(杨创华), Rui Su(苏锐), Jun Chen(陈军). Chin. Phys. B, 2016, 25(8): 086801.
[12] Subsurface defect characterization and laser-induced damage performance of fused silica optics polished with colloidal silica and ceria
Xiang He(何祥), Gang Wang(王刚), Heng Zhao(赵恒), Ping Ma(马平). Chin. Phys. B, 2016, 25(4): 048104.
[13] Influence of secondary treatment with CO2 laser irradiation for mitigation site on fused silica surface
Yong Jiang(蒋勇), Qiang Zhou(周强), Rong Qiu(邱荣), Xiang Gao(高翔), Hui-Li Wang(王慧丽), Cai-Zhen Yao(姚彩珍), Jun-Bo Wang(王俊波), Xin Zhao(赵鑫), Chun-Ming Liu(刘春明), Xia Xiang(向霞), Xiao-Tao Zu(祖小涛), Xiao-Dong Yuan(袁晓东), Xin-Xiang Miao(苗心向). Chin. Phys. B, 2016, 25(10): 108104.
[14] Numerical simulation of modulation to incident laser by submicron to micron surface contaminants on fused silica
Liang Yang(杨亮), Xia Xiang(向霞), Xin-Xiang Miao(苗心向), Li Li(李莉), Xiao-Dong Yuan(袁晓东), Zhong-Hua Yan(晏中华), Guo-Rui Zhou(周国瑞), Hai-Bing Lv(吕海兵), Wan-Guo Zheng(郑万国), Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2016, 25(1): 014210.
[15] An analytical model of thermal mechanical stress induced by through silicon via
Dong Gang (董刚), Shi Tao (石涛), Zhao Ying-Bo (赵颖博), Yang Yin-Tang (杨银堂). Chin. Phys. B, 2015, 24(5): 056601.
No Suggested Reading articles found!