Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104302    DOI: 10.1088/1674-1056/abf4bb
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical simulation of acoustic field under mechanical stirring

Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉)
School of Physics and Information Technology, Shaanxi Normal University, Shaanxi Key Laboratory of Ultrasonics, Xi'an 710119, China
Abstract  The present study analyzes the effect of stirring on ultrasonic degradation experiments through acoustic field distribution, which provides a guidance for further improvement of the degradation rate of organic solutions. It is known that in order to eliminate the standing wave field formed by ultrasonic radiation in the water tank, the liquid in the water tank needs to be stirred and the corresponding distribution of acoustic field is simulated by using the finite element method (FEM). The standing wave leads to an uneven distribution of the acoustic field when it is not stirred, and disappears after being stirred, which increases the cavitation area in the ultrasonic cleaning tank. Then, the degradation experiment with agitation is carried out. The experimental results show that the degradation rate of the solution is higher than that when there is no agitation, which confirms the importance of the acoustic field distribution to ultrasonic degradation. In addition, it is clear that with the increase of the stirring speed, the degradation rate increases first and reaches a maximum at 600 rpm before decreasing. Finally, the distribution of flow field is simulated and analyzed.
Keywords:  ultrasonic degradation      acoustic field      finite element method      flow field  
Received:  19 January 2021      Revised:  05 March 2021      Accepted manuscript online:  05 April 2021
PACS:  43.25.+y (Nonlinear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.38.+n (Transduction; acoustical devices for the generation and reproduction of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674207 and 11674206).
Corresponding Authors:  Zhuang-Zhi Shen     E-mail:  szz6@163.com

Cite this article: 

Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉) Numerical simulation of acoustic field under mechanical stirring 2021 Chin. Phys. B 30 104302

[1] Glaze W H, Kang J W and Chapin D H 1987 Sci. Eng. 9 335
[2] Pera-Titus M, García-Molina V, Baños M A, Giménez J and Esplugas S 2004 Appl. Catal. B 47 219
[3] Poyatos J M, Muñio M M, Almecija M C, Torres J C, Hontoria E and Osorio F 2010 State of the Art, Water, Air, and Soil Pollution 205 187
[4] Pang Y L, Abdullah A Z and Bhatia S 2011 Desalin. 277 1
[5] Jawale R H and Gogate P R 2018 Ultrason. Sonochem 40 89
[6] Tang H, Wang C C J, Blankschtein D and Langer R 2002 Pharm. Res. 19 1160
[7] Sazgarnia A and Shanei A 2012 Int. J. Photoenergy 2012 1
[8] Pugin B 1987 Ultrasonics 25 49
[9] Gachagan A, Speirs D and McNab A 2003 Ultrasonics 41 283
[10] Saéz V, Frıás-Ferrer A, Iniesta J, Gonzalez-GarcıJ, Aldaz A and Riera E 2005 Ultrason. Sonochem 12 59
[11] Klima J, Frias-Ferrerb A, Gonzalez-Garcia J, Ludvik J, Saéz V and Iniesta J 2005 Ultrason. Sonochem 14 19
[12] Wei Z and Weavers L K 2016 Ultrason. Sonochem 31 490
[13] Kauer M, Belova-Magria V, Cairósb C, Schreiera H and Mettinb R 2017 Ultrason. Sonochem 34 474
[14] Zhai W, Liu H M, Hong Z Y, Xie W J and Wei B 2017 Ultrason. Sonochem 34 130
[15] Zhang Z B, Gao T T, Liu X Y, Li D W, Lei Y Q and Wang Y W 2018 Ultrason. Sonochem 42 787
[16] Yasuda K, Matsuura K, Asakura1 Y and Koda S 2009 Jpn. J. Appl. Phys. 48 07GH04
[17] Yang Y, Wu Y Y, Yang X, Zhang K and Yang J K 2010 Water Sci. Technol. 62 256
[18] Yang Y, Yang J K, Zuo J L, Li Y, He S, Yang X and Zhang K 2011 Water Res. 45 3439
[19] Nyborg W L 1953 Electrochem. Soc. 25 68
[20] Pierce A D 1990 Acoust. Soc. Am. 87 2292
[21] Liu L Y, Wen J J, Yang Y and Tian W 2013 Ultrason. Sonochem 20 696
[22] Jia Y M 2006 Fluid Mechanics (2nd edn.) (Beijing) pp. 90-93
[23] Wang J G, Wang X K, Guo P Q, Guo W L, Li G F and Lu D G 2007 Chin. Environ. Sci. 27 129
[24] Xu Z, Yasuda K and Koda S 2013 Ultrason. Sonochem 20 452
[25] Wood R J, Vévert C, Lee J and Bussemaker M J 2020 Ultrason. Sonochem 63 104892
[1] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[4] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[5] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[6] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[7] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[8] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[9] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[10] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[11] Simulation of acoustic fields emitted by ultrasonic phased array in austenitic steel weld
Zhong-Cun Guo(郭忠存), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2019, 28(11): 114302.
[12] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[13] Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film
Qi-lin Xiong(熊启林), Xin Tian(田昕). Chin. Phys. B, 2017, 26(9): 096501.
[14] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[15] Density and temperature reconstruction of a flame-induced distorted flow field based on background-oriented schlieren (BOS) technique
Guang-Ming Guo(郭广明), Hong Liu(刘洪). Chin. Phys. B, 2017, 26(6): 064701.
No Suggested Reading articles found!